1
|
Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull 2025; 41:107-130. [PMID: 39153174 PMCID: PMC11748649 DOI: 10.1007/s12264-024-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 08/19/2024] Open
Abstract
The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
2
|
Sucha P, Hermanova Z, Chmelova M, Kirdajova D, Camacho Garcia S, Marchetti V, Vorisek I, Tureckova J, Shany E, Jirak D, Anderova M, Vargova L. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 2022; 16:1054919. [PMID: 36568889 PMCID: PMC9773096 DOI: 10.3389/fncel.2022.1054919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
Collapse
Affiliation(s)
- Petra Sucha
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Zuzana Hermanova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Martina Chmelova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Valeria Marchetti
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Eyar Shany
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia,First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia,*Correspondence: Miroslava Anderova,
| | - Lydia Vargova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| |
Collapse
|
3
|
Hirota K, Lambert DG. Ketamine; history and role in anesthetic pharmacology. Neuropharmacology 2022; 216:109171. [PMID: 35764129 DOI: 10.1016/j.neuropharm.2022.109171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022]
Abstract
Ketamine (Ket) was developed in 1962 as a less hallucinogenic and shorter acting agent than phencyclidine. It was given to humans for the first time in 1964. However, Ket produces several adverse reactions such as raised intracranial and blood pressures along with seizures, and patients still show low acceptance due to hallucinations. As new volatile and intravenous anesthetic agents with good emergence and favorable side effect profiles were developed, Ket use markedly decreased. In the 1990s, as the ultrashort-acting opioid remifentanil was developed, high dose opioid could be used to reduce surgical stress in highly invasive procedures. However, high dose opioids can produce hyperalgesia and acute tolerance. As Ket can exert anti-hyperalgesic actions, the clinical use of low dose Ket has been reconsidered. Other beneficial effects of Ket such as; analgesia, anti-shock in hemorrhagic and septic insults, anti-inflammatory effects, anti-tumor effects, brain and spinal cord neuroprotection, and bronchodilation, have all been reported. Moreover, this anesthetic agent at low dose has been recently recognized to possess anti-depressive actions. This diverse profile extends Ket far beyond anesthesia practice and the operating room.
Collapse
Affiliation(s)
- Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan.
| | - David G Lambert
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester, LE1 9HN, UK
| |
Collapse
|
4
|
Alghamdi AM, Yanagida M, Shirai Y, Andersson GG, Miyano K. Surface Passivation of Sputtered NiO x Using a SAM Interface Layer to Enhance the Performance of Perovskite Solar Cells. ACS OMEGA 2022; 7:12147-12157. [PMID: 35449936 PMCID: PMC9016879 DOI: 10.1021/acsomega.2c00509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/25/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Sputtered NiO x (sp-NiO x ) is a preferred hole transporting material for perovskite solar cells because of its hole mobility, ease of manufacturability, good stability, and suitable Fermi level for hole extraction. However, uncontrolled defects in sp-NiO x can limit the efficiency of solar cells fabricated with this hole transporting layer. An interfacial layer has been proposed to modify the sp-NiO x /perovskite interface, which can contribute to improving the crystallinity of the perovskite film. Herein, a 2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) self-assembled monolayer was used to modify an sp-NiO x surface. We found that the MeO-2PACz interlayer improves the quality of the perovskite film due to an enlarged domain size, reduced charge recombination at the sp-NiO x /perovskite interface, and passivation of the defects in sp-NiO x surfaces. In addition, the band tail states are also reduced, as indicated by photothermal deflection spectroscopy, which thus indicates a reduction in defect levels. The overall outcome is an improvement in the device efficiency from 11.9% to 17.2% due to the modified sp-NiO x /perovskite interface, with an active area of 1 cm2 (certified efficiency of 16.25%). On the basis of these results, the interfacial engineering of the electronic properties of sp-NiO x /MeO-2PACz/perovskite is discussed in relation to the improved device performance.
Collapse
Affiliation(s)
- Amira
R. M. Alghamdi
- Photovoltaic
Materials Group, Center for GREEN Research on Energy and Environmental
Materials, National Institute for Materials
Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Flinders
Institute for Nanoscale Science and Technology, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia
- Department
of Physics, College of Science, Imam Abdulrahman
Bin Faisal University, P.O. Box 1982, 31441 City Dammam, Saudi Arabi
| | - Masatoshi Yanagida
- Photovoltaic
Materials Group, Center for GREEN Research on Energy and Environmental
Materials, National Institute for Materials
Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yasuhiro Shirai
- Photovoltaic
Materials Group, Center for GREEN Research on Energy and Environmental
Materials, National Institute for Materials
Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Gunther G. Andersson
- Flinders
Institute for Nanoscale Science and Technology, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia
| | - Kenjiro Miyano
- Photovoltaic
Materials Group, Center for GREEN Research on Energy and Environmental
Materials, National Institute for Materials
Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
ARAL AL, ERGÜN MA, ENGİN AB, BÖRCEK AÖ, BOLAY H. Iron homeostasis is altered in response to hypoxia and hypothermic preconditioning in brain glial cells. Turk J Med Sci 2020; 50:2005-2016. [PMID: 32682355 PMCID: PMC7775693 DOI: 10.3906/sag-2003-41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background/aim Altered iron metabolism is one of the pathophysiological mechanisms occurring during hypoxic injuries in the central nervous system. Proper homeostasis of cellular iron is regulated by iron import, storage, and export proteins that prevent excess iron overload or iron starvation in cells. Therapeutic hypothermia is an approved treatment for hypoxic ischemia in newborns, but the underlying molecular mechanism is still unknown. We studied the effects of hypoxia, preceded with preconditioning, on the iron homeostasis of glial cells, known as a major actor in the inflammatory process during perinatal brain injury. Materials and methods Primary microglia and astrocytes in culture were exposed to 12 h of hypoxia with or without mild hypothermic preconditioning. The mRNA expression was assessed using qPCR. Iron accumulation was visualized via modified Perl’s histochemistry. Cytokine levels in cell cultures were measured using ELISA. Results Hypothermic preconditioning enhanced microglial viability, which previously was decreased in both cell types due to hypoxia. Hypoxia increased iron accumulation in the mixed glial cells and in ferritin expression in both microglia and astrocytes. Hypotermic preconditioning decreased the elevated ferritin-light chain expression significantly in microglia. Iron importer proteins, DMT1 and TfR1, both increased their mRNA expression after hypoxia, and hypothermic preconditioning continued to support the elevation of DMT1 in both glial cell types. Ferroportin expression increased as a survival factor of the glial cell following hypoxia. Hypothermic preconditioning supported this increase in both cell types and was especially significant in astrocytes. IL-10 levels were prominently increased in cell culture after hypothermic preconditioning. Conclusion The data suggest that hypothermic preconditioning affects cellular iron homeostasis by regulating the storage and transfer proteins of iron. Regulation of the cellular iron traffic may prevent glial cells from experiencing the detrimental effects of hypoxia-related inflammation.
Collapse
Affiliation(s)
- Arzu L. ARAL
- Department of Immunology, Faculty of Medicine, İzmir Demokrasi University, İzmirTurkey
| | - Mehmet Ali ERGÜN
- Department of Genetics, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Ayşe Başak ENGİN
- Department of Toxicology, Faculty of Pharmacy, Gazi University, AnkaraTurkey
| | - Alp Özgün BÖRCEK
- Department of Neurosurgery, Faculty of Medicine, Gazi University, AnkaraTurkey
| | - Hayrunnisa BOLAY
- Department of Neurology, Faculty of Medicine, Gazi University, AnkaraTurkey
| |
Collapse
|