1
|
Shinozuka T, Kanda M, Sato Y, Shimizu D, Tanaka C, Umeda S, Inokawa Y, Hattori N, Hayashi M, Nakayama G, Kodera Y. Increased STX3 transcript and protein levels were associated with poor prognosis in two independent cohorts of esophageal squamous cell carcinoma patients. Cancer Med 2023; 12:22185-22195. [PMID: 38014487 PMCID: PMC10757105 DOI: 10.1002/cam4.6770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Some conventional prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) have the disadvantage that they have only been investigated at the level of either mRNA or protein levels or only in individual cohorts. Associations between Syntaxin 3 (STX3) expression and malignancy have been reported in several tumor types but not in ESCC. Here, we investigated the levels of both STX3 mRNA and protein, and its prognostic potential in two independent cohorts of patients with ESCC. METHODS STX3 mRNA levels were examined in surgical specimens by quantitative PCR in a cohort that included 176 ESCC patients. STX3 protein levels were investigated in surgically resected ESCC tissues by immunohistochemistry using tissue microarrays in a different cohort of 177 ESCC patients. Correlations were analyzed between the expression of STX3 mRNA and protein with clinicopathological factors and long-term prognosis. RESULTS Quantitative PCR indicated a significant association between high level of STX3 mRNA expression and lymph node involvement, pathological stage, and poor overall survival. The multivariate analysis demonstrated that high STX3 mRNA expression was independently associated with poor overall survival outcomes. Immunohistochemistry revealed that STX3 protein expression in ESCC tissues and high STX3 protein expression were also significantly correlated with unfavorable overall survival. CONCLUSIONS Overexpression of STX3 mRNA and protein may serve as potential prognostic biomarkers for ESCC patients.
Collapse
Affiliation(s)
- Takahiro Shinozuka
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Mitsuro Kanda
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Yusuke Sato
- Department of Thoracic SurgeryAkita University Graduate School of MedicineAkitaJapan
| | - Dai Shimizu
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Chie Tanaka
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinichi Umeda
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshikuni Inokawa
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Norifumi Hattori
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Masamichi Hayashi
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Goro Nakayama
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Yasuhiro Kodera
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
2
|
Kwon Y, Kim J, Cho SY, Kang YJ, Lee J, Kwon J, Rhee H, Bauer S, Kim HS, Lee E, Kim HS, Jung JH, Kim H, Kim WK. Identification of novel pathogenic roles of BLZF1/ATF6 in tumorigenesis of gastrointestinal stromal tumor showing Golgi-localized mutant KIT. Cell Death Differ 2023; 30:2309-2321. [PMID: 37704840 PMCID: PMC10589262 DOI: 10.1038/s41418-023-01220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) frequently show KIT mutations, accompanied by overexpression and aberrant localization of mutant KIT (MT-KIT). As previously established by multiple studies, including ours, we confirmed that MT-KIT initiates downstream signaling in the Golgi complex. Basic leucine zipper nuclear factor 1 (BLZF1) was identified as a novel MT-KIT-binding partner that tethers MT-KIT to the Golgi complex. Sustained activation of activated transcription factor 6 (ATF6), which belongs to the unfolded protein response (UPR) family, alleviates endoplasmic reticulum (ER) stress by upregulating chaperone expression, including heat shock protein 90 (HSP90), which assists in MT-KIT folding. BLZF1 knockdown and ATF6 inhibition suppressed both imatinib-sensitive and -resistant GIST in vitro. ATF6 inhibitors further showed potent antitumor effects in GIST xenografts, and the effect was enhanced with ER stress-inducing drugs. ATF6 activation was frequently observed in 67% of patients with GIST (n = 42), and was significantly associated with poorer relapse-free survival (P = 0.033). Overall, GIST bypasses ER quality control (QC) and ER stress-mediated cell death via UPR activation and uses the QC-free Golgi to initiate signaling.
Collapse
Affiliation(s)
- Yujin Kwon
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Su-Yeon Cho
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Yoon Jin Kang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Department of Marine Life Sciences, College of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Jongsoo Lee
- Department of Urology, Urologic Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jaeyoung Kwon
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
| | - Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sebastian Bauer
- Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Germany and German Cancer Consortium (DKTK), Essen, 45141, Germany
| | - Hyung-Sik Kim
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae Hung Jung
- Department of Urology, Yonsei University Wonju College of Medicine/Center of Evidence Based Medicine Institute of Convergence Science, Wonju, 26426, South Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea.
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea.
| |
Collapse
|
3
|
Yang S, Sun Z, Zhang G, Wang L, Zhong Q. Identification of the key metabolites and related genes network modules highly associated with the nutrients and taste components among different Pepino (Solanum muricatum) cultivars. Food Res Int 2023; 163:112287. [PMID: 36596193 DOI: 10.1016/j.foodres.2022.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
There is considerable knowledge about plant compounds that produce flavor, scent, and aroma. Aside from the similarities, however, groups of plant-produced nutrients and taste components have little in common with each other. Network analysis holds promise for metabolic gene discovery, which is especially important in plant systems where metabolic networks are not yet fully resolved. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions in two different pepino varieties. Differential metabolomics analysis is carried out for detection of eventual interaction of compound. We adopted a multi-omics approach to profile the transcriptome and metabolome analyze differences in phenolic acids, flavonoids, organic acids, lipids, alkaloids, and sugars between LOF and SRF. The two most predominant classes of metabolites are phenolic acids and lipids in pepino. Overall results show enrichment in most DEGs was carbohydrate and biosynthesis of secondary metabolites pathway. Results of DEMs predominantly comprised N-p-coumaroyl agmatine and tryptamine, and significant differences were observed in their expression between LOF and SRF. Integrated DEMs and DEGs specific networks were constructed by combining two types of networks: transcriptional regulatory networks composed of interactions between DEMs and the regulated genes, and pepino metabolite-metabolite interaction networks. Newly discovered features, such as DEGs (USPA, UBE2 and DELLA) involved in the production of secondary metabolites are found in coregulated gene clusters. Moreover, lipid metabolites were most involved in DEMs correlations by OPLS-DA while identifying a significant number of DEGs co-regulated by SENP1, HMGCS et al. These results further that the metabolite discrepancies result from characterized the nutrients and taste components between two pepino genotype. Among the possible causes of the differences between species in pepino metabolite concentrations is co-regulated by these DEGs, continue to suggest that novel features of metabolite biosynthetic pathway remain to be uncovered. Finally, the integrated metabolome and transcriptome analyses have revealed that many important metabolic pathways are regulated at the transcriptional level. The metabolites content differences observed among varieties of the same species mainly originates from different regulated genes and enzymes expression. Overall, this study provides new insights into the underlying causes of differences in the plant metabolites and suggests that genetic data can be used to improve its nutrients and taste components.
Collapse
Affiliation(s)
- Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China; College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Zhu Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Guangnan Zhang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China.
| |
Collapse
|
4
|
Hirakawa H, Taguchi K, Murakawa S, Asano M, Noguchi S, Kikkawa S, Harada K, Adachi N, Ueyama T, Hide I, Tanaka S, Sakai N. Effects of flurbiprofen on the functional regulation of serotonin transporter and its misfolded mutant. J Pharmacol Sci 2021; 148:187-195. [PMID: 34924125 DOI: 10.1016/j.jphs.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022] Open
Abstract
Flurbiprofen, a nonsteroidal anti-inflammatory drug, reportedly exhibits chemical chaperone activity. Herein, we investigated the role of flurbiprofen in regulating serotonin transporter (SERT) function via membrane trafficking. We used COS-7 cells transiently expressing wild-type (WT) SERT or a C-terminus-deleted mutant of SERT (SERTΔCT), a misfolded protein. Flurbiprofen treatment reduced the expression of immaturely glycosylated SERT and enhanced the expression of maturely glycosylated SERT. In addition, we observed increased serotonin uptake in SERT-expressing cells. These results suggest that flurbiprofen modulates SERT function by promoting membrane trafficking. In SERTΔCT-expressing cells, flurbiprofen reduced the protein expression and uptake activity of SERTΔCT. Furthermore, flurbiprofen inhibited the formation of SERTΔCT aggregates. Studies using flurbiprofen enantiomers suggested that these effects of flurbiprofen on SERT were not mediated via cyclooxygenase inhibition. The levels of GRP78/BiP, an endoplasmic reticulum (ER) stress marker, were assessed to elucidate whether flurbiprofen can ameliorate SERTΔCT-induced ER stress. Interestingly, flurbiprofen induced GRP78/BiP expression only under ER stress conditions and not under steady-state conditions. In HRD1 E3 ubiquitin ligase knockdown cells, flurbiprofen affected the ER-associated degradation system. Collectively, the findings suggest that flurbiprofen may function as an inducer of molecular chaperones, in addition to functioning as a chemical chaperone.
Collapse
Affiliation(s)
- Haruki Hirakawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kei Taguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Seiya Murakawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaya Asano
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Satoshi Kikkawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|