1
|
Nasr S, Dawood AS, Ibrahim AM, Abdel-Aziz MS, Fayad W, Abdelnaser A, El-Hady FKA. Anti-inflammatory potential of aspergillus unguis SP51-EGY: TLR4-dependent effects & chemical diversity via Q-TOF LC-HRMS. BMC Biotechnol 2024; 24:62. [PMID: 39294631 PMCID: PMC11411751 DOI: 10.1186/s12896-024-00890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Inflammation serves as an intricate defense mechanism for tissue repair. However, overactivation of TLR4-mediated inflammation by lipopolysaccharide (LPS) can lead to detrimental outcomes such as sepsis, acute lung injury, and chronic inflammation, often associated with cancer and autoimmune diseases. This study delves into the anti-inflammatory properties of "Aspergillus unguis isolate SP51-EGY" on LPS-stimulated RAW 264.7 macrophages. Through real-time qPCR, we assessed the expression levels of pivotal inflammatory genes, including iNOS, COX-2, TNF-α, and IL-6. Remarkably, our fungal extracts significantly diminished NO production and showed noteworthy reductions in the mRNA expression levels of the aforementioned genes. Furthermore, while Nrf2 is typically associated with modulating inflammatory responses, our findings indicate that the anti-inflammatory effects of our extracts are not Nrf2-dependent. Moreover, the chemical diversity of the potent extract (B Sh F) was elucidated using Q-TOF LC-HRMS, identifying 54 compounds, some of which played vital roles in suppressing inflammation. Most notably, compounds like granisetron, fenofibrate, and umbelliprenin were found to downregulate TNF-α, IL-1β, and IL-6 through the NF-κB signaling pathway. In conclusion, "Aspergillus unguis isolate SP51-EGY", isolated from the Red Sea, Egypt, has been unveiled as a promising TLR4 inhibitor with significant anti-inflammatory potentials, presenting novel insights for their potential therapeutic use in inflammation.
Collapse
Affiliation(s)
- Soad Nasr
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt
- Biochemical Engineering Department, Faculty of Energy and Environmental Engineering, The British University in Egypt, Suez Desert Road, P.O. Box: 43, El-Shorouk City, Cairo, 11837, Egypt
| | - Abdelhameed S Dawood
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt
| | - Amal Mosad Ibrahim
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, 12622, Egypt
| | | | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Giza, 12622, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt.
| | - Faten K Abd El-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
2
|
Zhou P, Yang L, Li R, Yin Y, Xie G, Liu X, Shi L, Tao K, Zhang P. IRG1/itaconate alleviates acute liver injury in septic mice by suppressing NLRP3 expression and its mediated macrophage pyroptosis via regulation of the Nrf2 pathway. Int Immunopharmacol 2024; 135:112277. [PMID: 38788445 DOI: 10.1016/j.intimp.2024.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Sepsis, a systemic inflammatory response triggered by infection, has a considerably high mortality rate. However, effective prevention and intervention measures against sepsis remain insufficient. Therefore, this study aimed to investigate the mechanisms underlying the protective properties of immune response gene-1 (IRG1) and 4-Octyl itaconate (OI) during acute liver damage in mice with sepsis. A sepsis mouse model was established to compare wild-type and IRG1-/- groups. The impact of IRG1/Itaconate on pro- and anti-inflammatory cytokines was evaluated using J774A.1 cells. IRG1/Itaconate substantially reduced pro-inflammatory cytokines and increased the release of anti-inflammatory cytokines. It reduced pathological damage to liver tissues, preserved normal liver function, decreased the release of reactive oxygen species (ROS) and LDH, and enhanced the GSH/GSSG ratio. Moreover, IRG1 and itaconic acid activated the Nrf2 signaling pathway, regulating the expression of its downstream antioxidative stress-related proteins. Additionally, they inhibited the activity of NLRP3 inflammatory vesicles to suppress the expression of macrophage-associated pyroptosis signaling molecules. Our findings demonstrate that IRG1/OI inhibits NLRP3 inflammatory vesicle activation and macrophage pyroptosis by modulating the Nrf2 signaling pathway, thereby attenuating acute liver injury in mice with sepsis. These findings could facilitate the clinical application of IRG1/Itaconate to prevent sepsis-induced acute liver injury.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Lei Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China.
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China.
| |
Collapse
|
3
|
Xu B, Huang M, Qi H, Xu H, Cai L. Tomatidine activates autophagy to improve lung injury and inflammation in sepsis by inhibiting NF-κB and MAPK pathways. Mol Genet Genomics 2024; 299:14. [PMID: 38400847 DOI: 10.1007/s00438-024-02109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity. Autophagy is involved in the pathophysiological process of sepsis-induced ALI, including inflammation, which indicates that regulating autophagy may be beneficial for this disease. Tomatidine, a natural compound abundant in unripe tomatoes, has been reported to have anti-inflammatory, anti-tumorigenic, and lipid-lowering effects. However, the biological functions and mechanisms of tomatidine in sepsis-induced ALI remain unknown. The principal objective of this study was to investigate the effect of tomatidine on sepsis-induced ALI. Cecal ligation and puncture (CLP) was used to induce septic lung injury in mice, and 10 mg/kg tomatidine was intraperitoneally injected into mice 2 h after the operation. The results of hematoxylin and eosin staining and assessment of lung edema and total protein levels in bronchoalveolar lavage fluid (BALF) demonstrated that tomatidine alleviated CLP-induced severe lung injuries such as hemorrhage, infiltration of inflammatory cells, and interstitial and alveolar edema in mice. Additionally, the levels of proinflammatory cytokines in BALF and lung tissues were measured by enzyme-linked immunosorbent assay (ELISA), and the results showed that tomatidine inhibited CLP-induced inflammatory damage to lungs. Moreover, the results of western blotting showed that tomatidine promoted autophagy during CLP-induced ALI. Mechanistically, immunofluorescence staining and western blotting were used to measure the protein levels of TLR4, phosphorylated NF-κB, phosphorylated IκBα, and phosphorylated MAPKs, showing that tomatidine inactivated NF-κB and MAPK signaling in lung tissues of CLP-induced ALI mice. In conclusion, tomatidine exerts protective effects against sepsis-induced severe damage to the lungs by inhibiting inflammation and activating autophagy in CLP-treated mice through inactivating the NF-κB and MAPK pathways, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Bo Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China.
| | - Min Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 230000, China
| | - Hang Qi
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Hongzhou Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Liang Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| |
Collapse
|
4
|
Yang X, Dong X, Li J, Zheng A, Shi W, Shen C, Liu J. Nanocurcumin attenuates pyroptosis and inflammation through inhibiting NF-κB/GSDMD signal in high altitude-associated acute liver injury. J Biochem Mol Toxicol 2024; 38:e23606. [PMID: 38050447 DOI: 10.1002/jbt.23606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/12/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Exposure to a hypobaric hypoxic environment at high altitudes can lead to liver injury, and mounting evidence indicates that pyroptosis and inflammation play important roles in liver injury. Curcumin (Cur) can inhibit pyroptosis and inflammation. Therefore, our purpose here was to clarify the mechanism underlying the protective effect of nanocurcumin (Ncur) and Cur in a rat model of high altitude-associated acute liver injury. Eighty healthy rats were selected and exposed to different altitudes (6000 or 7000 m) for 0, 24, 48, or 72 h. Fifty normal healthy rats were divided into normal control, high-altitude control, salidroside (40 mg/kg [Sal-40]), Cur (200 mg/kg [Cur-200]), and Ncur (25 mg/kg [Ncur-25]) groups and exposed to a high-altitude hypobaric hypoxic environment (48 h, 7000 m). Serum-liver enzyme activities (alanine transaminase, aspartate transaminase, and lactate dehydrogenase were detected and histopathology of liver injury was evaluated by hematoxylin and eosin staining, and inflammatory factors were detected in liver tissues by enzyme-linked immunosorbent assays. Pyroptosis-associated proteins (gasdermin D, gasdermin D N-terminal [GSDMD-N], pro-Caspase-1, and cleaved-Caspase-1 [cleaved-Casp1]) and inflammation-associated proteins (nuclear factor-κB [NF-κB], phospho-NF-κB [P-NF-κB], and high-mobility group protein B1 [HMGB1]) levels were analyzed by immunoblotting. Ncur and Cur inhibited increased serum-liver enzyme activities, alleviated liver injury in rats caused by high-altitude hypobaric hypoxic exposure, and downregulated inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-18, in rat liver tissues. The level of P-NF-κB, GSDMD-N, cleaved-Casp1, and HMGB1 in rat liver tissues increased significantly after high-altitude exposure. Ncur and Cur downregulated P-NF-κB, GSDMD-N, cleaved-Casp-1, and HMGB1. Ncur and Cur may inhibit inflammatory responses and pyroptosis in a rat model of high altitude-associated acute liver injury.
Collapse
Affiliation(s)
- Xinyue Yang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjang Military Command, Urumqi, China
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Xiang Dong
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Jiajia Li
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medicine, Beijing, China
| | - Wenhui Shi
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Caifu Shen
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Jiangwei Liu
- Graduate School, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Park YJ, Seo KH, Joo JD, Jung HS, Kim YS, Lee JY, Park H. The effects of etomidate on expression of high mobility group box 1 via the nuclear factor kappa B pathway in rat model of sepsis. Libyan J Med 2023; 18:2182683. [PMID: 36855243 PMCID: PMC9980160 DOI: 10.1080/19932820.2023.2182683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Etomidate is an anesthetic agent used in hemodynamically unstable patients, but its use has been controversial in septic patients. The response of high-mobility group box 1 (HMGB1), a late-phase lethal cytokine in sepsis, to etomidate has not been reported. This study investigated the effects of etomidate on the expression and release of HMGB1 and the underlying mechanism using a cecal ligation and puncture (CLP) model. Thirty-six male Sprague-Dawley rats were divided into sham, CLP, and Etomi groups. Sepsis was induced in the CLP and Etomi groups, and intravenous etomidate (4 mg/kg) was infused for 40 min immediately after operation in the Etomi group. Serum creatinine, alanine aminotransferase (ALT), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and HMGB1 levels were measured 6 and 24 hours after surgery. Activation of nuclear factor (NF)-ĸB and HMGB1 mRNA expression in the liver, lung, kidney, and ileum tissues were measured, and immunohistochemical staining of HMGB1 was implemented. Increases of the TNF-α level 6 h after CLP and ALT and IL-6 levels 24 h after CLP were significantly inhibited by etomidate treatment. Etomidate treatment also significantly attenuated the increase in serum HMGB1 level at 6 and 24 h after CLP and suppressed the NF-ĸB and HMGB1 mRNA in multiple organs 24 h after CLP. Immunohistochemical staining also revealed that etomidate treatment inhibited HMGB1 expression. Etomidate inhibited the systemic release of HMGB1 and its expression in various organs. The mechanism may be associated with the inhibitory effects of etomidate on pro-inflammatory cytokine release and NF-ĸB activity.
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Anesthesiology and Pain Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Kwon Hui Seo
- Department of anesthesiology and Pain medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea,Seoul, Republic of Korea,CONTACT Kwon Hui Seo Department of Anesthesiology and Pain Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10 63-ro, Yeoungdeungpo-gu, Seoul07345, Republic of Korea
| | - Jin Deok Joo
- Department of Anesthesiology and Pain Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Hong Soo Jung
- Department of Anesthesiology and Pain Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Yong Shin Kim
- Department of Anesthesiology and Pain Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Ji Yung Lee
- Department of anesthesiology and Pain medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea,Seoul, Republic of Korea
| | - Hunwoo Park
- Department of anesthesiology and Pain medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea,Seoul, Republic of Korea
| |
Collapse
|
6
|
Mohyeldin RH, Alaaeldin R, Sharata EE, Attya ME, Elhamadany EY, Fathy M. LCZ696 attenuates sepsis-induced liver dysfunction in rats; the role of oxidative stress, apoptosis, and JNK1/2-P38 signaling pathways. Life Sci 2023; 334:122210. [PMID: 37883863 DOI: 10.1016/j.lfs.2023.122210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
AIM Sepsis is a serious inflammatory response to infection with an annual incidence rate of >48 million cases and 11 million fatalities worldwide. Furthermore, sepsis remains the world's fifth-greatest cause of death. For the first time, the current study aims to evaluate the possible hepatoprotective benefits of LCZ696, a combination of an angiotensin receptor blocker (valsartan) and a neprilysin inhibitor prodrug (sacubitril), on cecal ligation and puncture (CLP)-induced sepsis in rats. MAIN METHODS CLP was employed to induce sepsis. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1β, tumor necrosis factor-alpha (TNF-α), and caspase 3 were assessed using ELISA. Serum alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Western blot assay was used to determine the expression of JNK1/2 and P38 proteins. The histology of liver tissues was also examined. KEY FINDINGS CLP resulted in significant elevation of AST, ALT, MDA, IL-6, IL-1β, TNF-α, and caspase 3 levels, and up-regulation of p/t JNK1/2, and p/t P38 proteins, as compared to the sham group. However, level of GSH, and SOD activity were reduced in CLP group. LCZ696 significantly improved all the previously mentioned biochemical and histological abnormalities better than using valsartan alone. SIGNIFICANCE LCZ696 substantially ameliorated CLP-induced liver damage, compared to valsartan, by reducing proinflammatory mediators, inhibiting the JNK1/2 and P38 signaling pathway, and attenuating apoptosis.
Collapse
Affiliation(s)
- Reham H Mohyeldin
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Eyad Y Elhamadany
- Innovative Research Center, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
7
|
Chen L, Li M, Lin Y, Li Y, Liang M, Zeng K. Neutrophil elastase in dexmedetomidine alleviating sepsis-related renal injury in rats. Int Immunopharmacol 2023; 122:110441. [PMID: 37393835 DOI: 10.1016/j.intimp.2023.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND This research was to investigate the mechanism of neutrophil elastase (NE) in dexmedetomidine (DEX) alleviates sepsis-related renal injury in rats. METHODS Sixty healthy male SD rats aged 6-7 weeks were randomly assigned to the control group (Sham group (S group)), Model group (M group), Model + DEX group (M + DEX group), and Model + DEX + Elaspol group (M + DEX + Elaspol (sivelestat) group), with 15 rats in each group. The renal morphology and pathological changes of different groups of rats after modeling were observed, and renal tubular injury was scored. Serum samples were collected at 6 h, 12 h, and 24 h after modeling, and the rats were sacrificed. Renal function indicators, including neutrophil gelatinase-associated lipoprotein (NGAL), kidney injury molecule-1 (KIM-1), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), NE, serum creatinine (SCr), and blood urea nitrogen (BUN), were analyzed by enzyme-linked immunosorbent assay at different time periods. The level of NF-кB in renal tissue was detected by immunohistochemistry. RESULTS It was revealed that the general color of renal tissue in M group was dark red, swollen, and congested, and the renal tubular epithelial cells were significantly enlarged, with obvious vacuolar degeneration and inflammatory cell infiltration. Compared with M group, the color and morphology of renal tissue in M + DEX group and M + DEX + Elaspol group were improved, and the amount of inflammatory cell infiltration was reduced. The renal tubular injury score, SCr level, BUN level, NGAL level, KIM-1 level, TNF-α, IL-6, NE level, and NF-кB level in M group were significant different from S group 12 h after the operation (P < 0.001). The renal tubular injury score, SCr level, BUN level, NGAL level, KIM-1 level, TNF-α, IL-6, NE level, and NF-кB level in M + DEX group were significant different from M group (P < 0.01). The renal tubular injury score, SCr level, BUN level, NGAL level, KIM-1 level, TNF-α, IL-6, NE level, and NF-кB level in M + DEX + Elaspol group were significant different from those in M group at 12 h after the operation (P < 0.001). CONCLUSION NE plays an active role in the reduction of sepsis-related renal injury in rats by inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Lu Chen
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China
| | - Min Li
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force, Fuzhou, 350025 Fujian, China
| | - Yingyi Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China
| | - Yanzhen Li
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China
| | - Min Liang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China.
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Department of Anesthesiology, Anesthesiology Research Institute, The first Affiliated Hospital of Fujian Medical University, Fuzhou 350005 Fujian, China.
| |
Collapse
|
8
|
Zeng J, Zhao G. α-Hederin regulates macrophage polarization to relieve sepsis-induced lung and liver injuries in mice. Open Med (Wars) 2023; 18:20230695. [PMID: 37251537 PMCID: PMC10224612 DOI: 10.1515/med-2023-0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis is one of the most fatal inflammatory diseases with multiple organ failure caused by pathological infection. α-Hederin, a monodesmosidic triterpenoid saponin, has many biological activities including anti-inflammation. This study aimed to investigate the effect of α-Hederin on lung and liver injuries in septic mice. Mice underwent cecal ligation and puncture-induced sepsis were intraperitoneally injected with 0.3 or 3 mg/kg α-Hederin. α-Hederin treatment dose-dependently attenuated the lung and liver injuries in septic mice. Correspondingly, α-Hederin significantly decreased malondialdehyde production, increased the levels of superoxide dismutase and glutathione in lung tissues, reduced serum alanine aminotransferase and aspartate aminotransferase activities, and suppressed the levels of TNF-α and IL-6 in both tissues and in the serum. Moreover, α-Hederin augmented CD206 level and inhibited the productions of CD86 and iNOS in lung and liver tissues of septic mice. Importantly, p-p65/p65 was suppressed, whereas IκB was elevated by α-Hederin. In conclusion, α-Hederin could improve the lung and liver injuries in mice with sepsis by regulating macrophage M1/M2 polarization and inhibiting the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junan Zeng
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi Province, 710061, P.R. China
| | - Guangyu Zhao
- Department of Pediatrics, Xi’an Central Hospital, Xi’an, Shaanxi Province, 710003, P.R. China
| |
Collapse
|
9
|
Guan J, Liao Y, Guo Y, Yu S, Wei R, Niu M, Gan J, Zhang L, Li T, Lv J, Shichen M, Chang P, Chen P, Liu Z. Adjunctive granisetron therapy in patients with sepsis or septic shock (GRANTISS): A single-center, single-blinded, randomized, controlled clinical trial. Front Pharmacol 2022; 13:1013284. [PMID: 36582527 PMCID: PMC9792607 DOI: 10.3389/fphar.2022.1013284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background: In preclinical experiments, we demonstrated that the 5-HT3 receptor antagonist granisetron results in reduced inflammation and improved survival in septic mice. This randomized controlled trial was designed to assess the efficacy and safety of granisetron in patients with sepsis. Methods: Adult patients with sepsis and procalcitonin ≥ 2 ng/ml were randomized in a 1:1 ratio to receive intravenous granisetron (3 mg every 8 h) or normal saline at the same volume and frequency for 4 days or until intensive care unit discharge. The primary outcome was 28-day all-cause mortality. Secondary outcomes included the duration of supportive therapies for organ function, changes in sequential organ failure assessment scores over 96 h, procalcitonin reduction rate over 96 h, the incidence of new organ dysfunction, and changes in laboratory variable over 96 h. Adverse events were monitored as the safety outcome. Results: The modified intention-to-treat analysis included 150 septic patients. The 28-day all-cause mortalities in the granisetron and placebo groups were 34.7% and 35.6%, respectively (odds ratio, 0.96; 95% CI, 0.49-1.89). No differences were observed in secondary outcomes. In the subgroup analysis of patients without abdominal or digestive tract infections, the 28-day mortality in the granisetron group was 10.9% lower than mortality in the placebo group. Adverse events were not statistically different between the groups. Conclusion: Granisetron did not improve 28-day mortality in patients with sepsis. However, a further clinical trial targeted to septic patients without abdominal/digestive tract infections perhaps is worthy of consideration.
Collapse
Affiliation(s)
- Jianbin Guan
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuping Liao
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan, China
| | - Yuexun Guo
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Department of Critical Care Medicine, DongGuan Tungwah Hospital, DongGuan, China
| | - Shuang Yu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rongjuan Wei
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mengwei Niu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianwei Gan
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Li
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Lv
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Maoyou Shichen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Zhanguo Liu, ; Peng Chen, ; Ping Chang,
| | - Peng Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Zhanguo Liu, ; Peng Chen, ; Ping Chang,
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Zhanguo Liu, ; Peng Chen, ; Ping Chang,
| |
Collapse
|
10
|
Senousy SR, Ahmed ASF, Abdelhafeez DA, Khalifa MMA, Abourehab MAS, El-Daly M. Alpha-Chymotrypsin Protects Against Acute Lung, Kidney, and Liver Injuries and Increases Survival in CLP-Induced Sepsis in Rats Through Inhibition of TLR4/NF-κB Pathway. Drug Des Devel Ther 2022; 16:3023-3039. [PMID: 36105322 PMCID: PMC9467300 DOI: 10.2147/dddt.s370460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract Inflammation and oxidative stress play a major role in the development of sepsis and its associated complications, leading to multiple organ failure and death. The lungs, liver, and kidneys are among the early affected organs correlated with mortality in sepsis. Alpha-chymotrypsin (α-ch) is a serine protease that exerts anti-inflammatory, anti-edematous, and anti-oxidant properties. Purpose This study was undertaken to elucidate if the anti-inflammatory and anti-oxidant effects of α-ch observed in previous studies can alleviate lung, liver, and kidney injuries in a cecal ligation and puncture (CLP)-induced sepsis model, and thus decrease mortality. Materials and Methods Septic animals were given α-ch 2 h post CLP procedure. Sepsis outcomes were assessed in the lungs, liver, and kidneys. Separate animal groups were investigated for a survival study. Results CLP resulted in 0% survival, while α-chymotrypsin post-treatment led to 50% survival at the end of the study. Administration of α-chymotrypsin resulted in a significant attenuation of sepsis-induced elevated malonaldehyde (MDA) and total nitrite/nitrate (NOx) levels. In addition, there was a significant increase in reduced glutathione (GSH) content and superoxide dismutase (SOD) activity in the lungs, liver, and kidneys. Administration of α-ch reduced elevated tissue expression of toll-like receptor-4 (TLR4), nuclear factor kappa-B (NF-κB), myeloperoxidase (MPO), and inducible nitric oxide synthase (iNOS). Alpha-chymotrypsin resulted in a significant reduction in serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). Alpha-chymotrypsin attenuated the rise in serum creatinine, cystatin C, blood urea nitrogen (BUN), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels that was observed in the septic group. In addition, α-ch significantly reduced the lung wet/dry weight ratio, total protein content, and leukocytic counts in bronchoalveolar lavage fluid (BALF). Histopathological examination of the lungs, liver, and kidneys confirmed the protective effects of α-ch on those organs. Conclusion α-ch has protective potential against sepsis through lowering tissue expression of TLR4, NF-κB, MPO, and iNOS leading to decreased oxidative stress and inflammatory signals induced by sepsis. This effect appeared to alleviate the damage to the lungs, liver, and kidneys and increase survival in rats subjected to sepsis.
Collapse
Affiliation(s)
- Shaymaa Ramzy Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Correspondence: Al-Shaimaa F Ahmed, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt, Tel +20 1020018842, Email
| | - Dalia A Abdelhafeez
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
11
|
Matouk AI, El-Daly M, Habib HA, Senousy S, Naguib Abdel Hafez SM, Kasem AW, Almalki WH, Alzahrani A, Alshehri A, Ahmed ASF. Protective effects of menthol against sepsis-induced hepatic injury: Role of mediators of hepatic inflammation, apoptosis, and regeneration. Front Pharmacol 2022; 13:952337. [PMID: 36120368 PMCID: PMC9476320 DOI: 10.3389/fphar.2022.952337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Liver dysfunction in sepsis is a major complication that amplifies multiple organ failure and increases the risk of death. Inflammation and oxidative stress are the main mediators in the pathophysiology of sepsis. Therefore, we investigated the role of menthol, a natural antioxidant, against sepsis-induced liver injury in female Wistar rats. Sepsis was induced by cecal ligation and puncture (CLP). Menthol (100 mg/kg) was given intragastric 2 h after CLP. Blood samples and liver tissues were collected 24 h after surgery. Menthol significantly (p < 0.05) attenuated the sepsis-induced elevation in serum liver enzymes and improved the hepatic histopathological changes. Menthol treatment significantly (p < 0.05) decreased hepatic levels of tumor necrosis factor-alpha, malondialdehyde, total nitrite, and cleaved caspase-3. It restored the hepatic levels of superoxide dismutase and reduced glutathione. Additionally, menthol significantly (p < 0.05) increased hepatic levels of B-cell lymphoma 2 (Bcl-2); an anti-apoptotic factor, and proliferating cell nuclear antigen (PCNA), a biomarker of regeneration and survival. Our results showed the therapeutic potential of menthol against liver injury induced by sepsis.
Collapse
Affiliation(s)
- Asmaa I. Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Heba A. Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Shaymaa Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | | | - AlShaimaa W. Kasem
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, AlBaha University, Al Bahah, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, AlBaha University, Al Bahah, Saudi Arabia
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
- *Correspondence: Al-Shaimaa F. Ahmed,
| |
Collapse
|
12
|
Kobuchi S, Kanda N, Okumi T, Kano Y, Tachi H, Ito Y, Sakaeda T. Comparing the pharmacokinetics and organ/tissue distribution of anti-methicillin-resistant Staphylococcus aureus agents using a rat model of sepsis. Xenobiotica 2022; 52:583-590. [PMID: 35815433 DOI: 10.1080/00498254.2022.2098201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sepsis is a major cause of death, and sepsis-derived physiological changes complicate the understanding of drug distribution in organs/tissues, which determines the efficacy and toxicity of antimicrobial agents. In this study, we evaluated and compared the pharmacokinetics of methicillin-resistant Staphylococcus aureus treatment agents in sepsis with that of vancomycin, arbekacin, linezolid, and daptomycin.Rat models of sepsis were prepared using cecal ligation puncture. The pharmacokinetics of vancomycin, arbekacin, linezolid, and daptomycin were evaluated using their drug concentration profiles in plasma, kidneys, liver, lungs, skin, and muscles after intravenous administration in normal and septic rats.The kidney/plasma concentration ratio was higher in septic rats than in normal rats for vancomycin, arbekacin, and daptomycin but not for linezolid. The increase in the kidney/plasma concentration ratio for vancomycin was time-dependent, indicating an association between sepsis and stasis of vancomycin in the kidneys. In contrast, the distribution of linezolid from the blood to the organs/tissues in septic rats was comparable to that in normal rats.Sepsis-induced nephrotoxicity results in the stasis of vancomycin in the kidney, suggesting that this exacerbates proximal tubular epithelial cell injury. No dose modification of linezolid may be required for patients with sepsis.
Collapse
Affiliation(s)
- Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Naoya Kanda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Taichi Okumi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuma Kano
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Himawari Tachi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
13
|
Senousy SR, El-Daly M, Ibrahim ARN, Khalifa MMA, Ahmed ASF. Effect of Celecoxib and Infliximab against Multiple Organ Damage Induced by Sepsis in Rats: A Comparative Study. Biomedicines 2022; 10:biomedicines10071613. [PMID: 35884918 PMCID: PMC9312943 DOI: 10.3390/biomedicines10071613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
In cases of sepsis, the immune system responds with an uncontrolled release of proinflammatory cytokines and reactive oxygen species. The lungs, kidneys, and liver are among the early impacted organs during sepsis and are a direct cause of mortality. The aim of this study was to compare the effects of infliximab (IFX) and celecoxib (CLX) on septic rats that went through a cecal ligation and puncture (CLP) surgery to induce sepsis. This study included four groups: sham, CLP (untreated), and CLP-treated with CLX or IFX. The administration of “low dose” CLX or IFX was performed after 2 h following the induction of sepsis. Twenty-four hours following the induction of sepsis, the rats were sacrificed and blood samples were collected to evaluate kidney, liver, and lung injuries. MDA and NOx content, in addition to SOD activity and GSH levels, were evaluated in the tissue homogenates of each group. Tissue samples were also investigated histopathologically. In a separate experiment, the same groups were employed to evaluate the survival of septic rats in a 7-day observation period. The results of this study showed that treatment with either CLX or IFX ameliorated the three organs’ damage compared to septic-untreated rats, decreased oxidative stress, enhanced the antioxidant defense, and reduced serum cytokines. As a result, a higher survival rate resulted: 62.5% and 37.5% after the administration of CLX and IFX, respectively, compared to 0% in the CLP group after 7 days. No significant differences were observed between the two agents in all measured parameters. Histopathological examination confirmed the observed results. In conclusion, CLX and IFX ameliorated lung, kidney, and liver injuries associated with sepsis through anti-inflammatory and antioxidant actions, which correlated to the increase in survival observed with both of them.
Collapse
Affiliation(s)
- Shaymaa Ramzy Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
- Correspondence: ; Tel.: +96-65-5408-8979
| | - Mohamed Montaser A. Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61511, Egypt; (S.R.S.); (M.E.-D.); (M.M.A.K.); (A.-S.F.A.)
| |
Collapse
|
14
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving HR. A systematic review and meta-analyses of interleukin-1 receptor associated kinase 3 (IRAK3) action on inflammation in in vivo models for the study of sepsis. PLoS One 2022; 17:e0263968. [PMID: 35167625 PMCID: PMC8846508 DOI: 10.1371/journal.pone.0263968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Background Interleukin-1 receptor associated kinase 3 (IRAK3) is a critical modulator of inflammation and is associated with endotoxin tolerance and sepsis. Although IRAK3 is known as a negative regulator of inflammation, several studies have reported opposing functions, and the temporal actions of IRAK3 on inflammation remain unclear. A systematic review and meta-analyses were performed to investigate IRAK3 expression and its effects on inflammatory markers (TNF-α and IL-6) after one- or two-challenge interventions, which mimic the hyperinflammatory and immunosuppression phases of sepsis, respectively, using human or animal in vivo models. Methods This systematic review and meta-analyses has been registered in the Open Science Framework (OSF) (Registration DOI: 10.17605/OSF.IO/V39UR). A systematic search was performed to identify in vivo studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data was available. Results The search identified 7778 studies for screening. After screening titles, abstracts and full texts, a total of 49 studies were included in the systematic review. The review identified significant increase of IRAK3 mRNA and protein expression at different times in humans compared to rodents following one-challenge, whereas the increases of IL-6 and TNF-α protein expression in humans were similar to rodent in vivo models. Meta-analyses confirmed the inhibitory effect of IRAK3 on TNF-α mRNA and protein expression after two challenges. Conclusions A negative correlation between IRAK3 and TNF-α expression in rodents following two challenges demonstrates the association of IRAK3 in the immunosuppression phase of sepsis. Species differences in underlying biology affect the translatability of immune responses of animal models to human, as shown by the dissimilarity in patterns of IRAK3 mRNA and protein expression between humans and rodents following one challenge that are further influenced by variations in experimental procedures.
Collapse
Affiliation(s)
- Trang H. Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| |
Collapse
|