1
|
Rodríguez-Cattáneo A, Pereira AC, Aguilera PA, Caputi ÁA. Packet information encoding in a cerebellum-like circuit. PLoS One 2024; 19:e0308146. [PMID: 39302961 DOI: 10.1371/journal.pone.0308146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Packet information encoding of neural signals was proposed for vision about 50 years ago and has recently been revived as a plausible strategy generalizable to natural and artificial sensory systems. It involves discrete image segmentation controlled by feedback and the ability to store and compare packets of information. This article shows that neurons of the cerebellum-like electrosensory lobe (EL) of the electric fish Gymnotus omarorum use spike-count and spike-timing distribution as constitutive variables of packets of information that encode one-by-one the electrosensory images generated by a self-timed series of electric organ discharges (EODs). To evaluate this hypothesis, extracellular unitary activity was recorded from the centro-medial map of the EL. Units recorded in high-decerebrate preparations were classified into six types using hierarchical cluster analysis of post-EOD spiking histograms. Cross-correlation analysis indicated that each EOD strongly influences the unit firing probability within the next inter-EOD interval. Units of the same type were similarly located in the laminar organization of the EL and showed similar stimulus-specific changes in spike count and spike timing after the EOD when a metal object was moved close by, along the fish's body parallel to the skin, or when the longitudinal impedance of a static cylindrical probe placed at the center of the receptive field was incremented in a stepwise manner in repetitive trials. These last experiments showed that spike-counts and the relative entropy, expressing a comparative measure of information before and after the step, were systematically increased with respect to a control in all unit types. The post-EOD spike-timing probability distribution and the relatively independent contribution of spike-timing and number to the content of information in the transmitted packet suggest that these are the constitutive image-encoding variables of the packets. Comparative analysis suggests that packet information transmission is a general principle for processing superposition images in cerebellum-like networks.
Collapse
Affiliation(s)
- Alejo Rodríguez-Cattáneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ana Carolina Pereira
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pedro Anibal Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ángel Ariel Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
2
|
Abstract
The electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms. Secondly, the Review discusses the threefold function of the fish-centered electric fields: (1) to generate electric signals that encode the material, geometry and distance of nearby objects, serving as a short-range sensory modality or 'electric touch'; (2) to mark emitter identity and location; and (3) to convey social messages encoded in stereotypical modulations of the electric field that might be considered as species-specific communication symbols. Finally, this Review considers a range of potential research directions that are likely to be productive in the future.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Sistema Nacional de Investigadores - Uruguay, Av. Wilson Ferreira Aldunate 1219, Pando, PC 15600, Uruguay
| |
Collapse
|
3
|
Zweifel NO, Hartmann MJZ. Defining "active sensing" through an analysis of sensing energetics: homeoactive and alloactive sensing. J Neurophysiol 2020; 124:40-48. [PMID: 32432502 DOI: 10.1152/jn.00608.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The term "active sensing" has been defined in multiple ways. Most strictly, the term refers to sensing that uses self-generated energy to sample the environment (e.g., echolocation). More broadly, the definition includes all sensing that occurs when the sensor is moving (e.g., tactile stimuli obtained by an immobile versus moving fingertip) and, broader still, includes all sensing guided by attention or intent (e.g., purposeful eye movements). The present work offers a framework to help disambiguate aspects of the "active sensing" terminology and reveals properties of tactile sensing unique among all modalities. The framework begins with the well-described "sensorimotor loop," which expresses the perceptual process as a cycle involving four subsystems: environment, sensor, nervous system, and actuator. Using system dynamics, we examine how information flows through the loop. This "sensory-energetic loop" reveals two distinct sensing mechanisms that subdivide active sensing into homeoactive and alloactive sensing. In homeoactive sensing, the animal can change the state of the environment, while in alloactive sensing the animal can alter only the sensor's configurational parameters and thus the mapping between input and output. Given these new definitions, examination of the sensory-energetic loop helps identify two unique characteristics of tactile sensing: 1) in tactile systems, alloactive and homeoactive sensing merge to a mutually controlled sensing mechanism, and 2) tactile sensing may require fundamentally different predictions to anticipate reafferent input. We expect this framework may help resolve ambiguities in the active sensing community and form a basis for future theoretical and experimental work regarding alloactive and homeoactive sensing.
Collapse
Affiliation(s)
- Nadina O Zweifel
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Mitra J Z Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
4
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
5
|
Abstract
Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be schematically described as having four main components: active electroreception, passive electroreception, lateral line sense and, proprioception. Amongst these sensory modalities, proprioception and electroreception show 'active' systems that extrct information carried by self generated forms of energy. This ensemble of four sensory modalities is present in African mormyriformes and American gymnotiformes. The convergent evolution of similar imaging, peripheral encoding, and central processing mechanisms suggests that these mechanisms may be the most suitable for dealing with electric images in the context of the other and self generated actions. This review deals with the way in which biological organisms address three of the problems that are faced when designing a bioinspired electroreceptive agent: (a) body shape, material and mobility, (b) peripheral encoding of electric images, and (c) early processing of electrosensory signals. Taking into account biological solutions I propose that the new generation of underwater agents should have electroreceptive arms, use complex peripheral sensors for encoding the images and cerebellum like architecture for image feature extraction and implementing sensory-motor transformations.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Departamento de Neurociencias Integrativas y Computacionales Instituto de Investigaciones Biológicas Clemente Estable. Av. Italia 3318 Montevideo, Uruguay
| |
Collapse
|
6
|
Lebastard V, Boyer F, Lanneau S. Reactive underwater object inspection based on artificial electric sense. BIOINSPIRATION & BIOMIMETICS 2016; 11:045003. [PMID: 27458187 DOI: 10.1088/1748-3190/11/4/045003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Weakly electric fish can perform complex cognitive tasks based on extracting information from blurry electric images projected from their immediate environment onto their electro-sensitive skin. In particular they can be trained to recognize the intrinsic properties of objects such as their shape, size and electric nature. They do this by means of novel perceptual strategies that exploit the relations between the physics of a self-generated electric field, their body morphology and the ability to perform specific movement termed probing motor acts (PMAs). In this article we artificially reproduce and combine these PMAs to build an autonomous control strategy that allows an artificial electric sensor to find electrically contrasted objects, and to orbit around them based on a minimum set of measurements and simple reactive feedback control laws of the probe's motion. The approach does not require any simulation models and could be implemented on an autonomous underwater vehicle (AUV) equipped with artificial electric sense. The AUV has only to satisfy certain simple geometric properties, such as bi-laterally (left/right) symmetrical electrodes and possess a reasonably high aspect (length/width) ratio.
Collapse
Affiliation(s)
- Vincent Lebastard
- UMR_C 6597 Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), 1 rue de la Noë BP 92101, 44321 Nantes Cedex 3 - France
| | | | | |
Collapse
|
7
|
Pereira AC, Rodríguez-Cattáneo A, Caputi AA. The slow pathway in the electrosensory lobe of Gymnotus omarorum: field potentials and unitary activity. ACTA ACUST UNITED AC 2014; 108:71-83. [PMID: 25088503 DOI: 10.1016/j.jphysparis.2014.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/26/2022]
Abstract
This is a first communication on the self-activation pattern of the electrosensory lobe in the pulse weakly electric fish Gymnotus omarorum. Field potentials in response to the fish's own electric organ discharge (EOD) were recorded along vertical tracks (50μm step) and on a transversal lattice array across the electrosensory lobe (resolution 50μm×100μm). The unitary activity of 82 neurons was recorded in the same experiments. Field potential analysis indicates that the slow electrosensory path shows a characteristic post-EOD pattern of activity marked by three main events: (i) a small and early component at about 7ms, (ii) an intermediate peak about 13ms and (iii) a late broad component peaking after 20ms. Unit firing rate showed a wide range of latencies between 3 and 30ms and a variable number of spikes (median 0.28units/EOD). Conditional probability analysis showed monomodal and multimodal post-EOD histograms, with the peaks of unit activity histograms often matching the timing of the main components of the field potentials. Monomodal responses were sub-classified as phase locked monomodal (variance smaller than 1ms), early monomodal (intermediate variance, often firing in doublets, peaking range 10-17ms) and late monomodal (large variance, often firing two spikes separated about 10ms, peaking beyond 17ms). The responses of multimodal units showed that their firing probability was either enhanced, or depressed just after the EOD. In this last (depressed) subtype of unit the probability stepped down just after the EOD. Early inhibition and the presence of early phase locked units suggest that the observed pattern may be influenced by a fast feed forward inhibition. We conclude that the ELL in pulse gymnotiformes is activated in a complex sequence of events that reflects the ELL network connectivity.
Collapse
Affiliation(s)
- Ana Carolina Pereira
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alejo Rodríguez-Cattáneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
8
|
Forlim CG, Pinto RD. Automatic realistic real time stimulation/recording in weakly electric fish: long time behavior characterization in freely swimming fish and stimuli discrimination. PLoS One 2014; 9:e84885. [PMID: 24400122 PMCID: PMC3882270 DOI: 10.1371/journal.pone.0084885] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 11/28/2013] [Indexed: 11/18/2022] Open
Abstract
Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution.
Collapse
Affiliation(s)
- Caroline G. Forlim
- Departamento de Física Geral, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Neurodinâmica/Neurobiofísica, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Reynaldo D. Pinto
- Laboratório de Neurodinâmica/Neurobiofísica, Universidade de São Paulo, São Carlos, SP, Brazil
- * E-mail:
| |
Collapse
|
9
|
Hofmann V, Sanguinetti-Scheck JI, Künzel S, Geurten B, Gómez-Sena L, Engelmann J. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish. J Exp Biol 2013; 216:2487-500. [DOI: 10.1242/jeb.082420] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.
Collapse
Affiliation(s)
- Volker Hofmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Juan I. Sanguinetti-Scheck
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Silke Künzel
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Bart Geurten
- Göttingen University, Abt. Zelluläre Neurobiologie, Schwann-Schleiden Forschungszentrum, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Leonel Gómez-Sena
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Jacob Engelmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
Caputi AA, Aguilera PA, Carolina Pereira A, Rodríguez-Cattáneo A. On the haptic nature of the active electric sense of fish. Brain Res 2013; 1536:27-43. [PMID: 23727613 DOI: 10.1016/j.brainres.2013.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022]
Abstract
Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
11
|
Abstract
Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.
Collapse
|
12
|
Pereira AC, Aguilera P, Caputi AA. The active electrosensory range of Gymnotus omarorum. J Exp Biol 2012; 215:3266-80. [DOI: 10.1242/jeb.070813] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
This article reports a biophysical and behavioral assessment of the active electrolocation range of Gymnotus omarorum. Physical measurements show that the stimulus field of a point on the sensory mosaic (i.e. the potential positions in which an object may cause a significant departure of the transcutaneous field from basal in the absence of an object) consists of relatively extended volumes surrounding this point. The shape of this stimulus field is dependent on the position of the point on the receptive mosaic and the size of the object. Although the limit of stimulus fields is difficult to assess (it depends on receptor threshold), departure from the basal field decays rapidly, vanishing at about 1.5 diameters for conductive spheres. This short range was predictable from earlier theoretical constructs and experimental data. Here, we addressed the contribution of three different but synergetic mechanisms by which electrosensory signals attenuate with object distance. Using novelty responses as an indicator of object detection we confirmed that the active electrosensory detection range is very short. Behavioral data also indicate that the ability to precisely locate a small object of edible size decays even more rapidly than the ability to detect it. The role of active electroreception is discussed in the context of the fish's habitat.
Collapse
Affiliation(s)
- Ana Carolina Pereira
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Pedro Aguilera
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Angel A. Caputi
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| |
Collapse
|
13
|
Identifying self- and nonself-generated signals: lessons from electrosensory systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:107-25. [PMID: 22399398 DOI: 10.1007/978-1-4614-1704-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
This chapter provides a short review of the mechanisms used by electroreceptive fish to discriminate self- from nonself-generated signals. Electroreception is used by animals to detect objects of electric impedance different from the water, to detect natural electrogenic sources and to communicate signals between conspecifics. Electroreceptive animals may generate electric fields either with the purpose of electrically illuminating the neighborhood or as an epiphenomenon of other functions. In addition, the presence of the fish body as a conductive object in a scene funnels the current flow and, consequently, animal movements also generate signals by changing the body shape or the spatial relationship of the body with the surrounding objects. Therefore, mechanisms for discrimination between self and externally generated signals are very important for constructing a coherent representation of the environment. Some mechanisms facilitate and stream the flow of signals carried by the self-generated electric field. Others are designed to reject unwanted interference coming from self-generated movements or even the self-generated electric field. Finally, more complex operations involving sensory motor integration are used for discriminating between self- and conspecific- generated communication signals. Despite the evolutionary distance between animals endowed with electric sense, mechanisms for self-identification reappear with few differences between species. This suggests that many of the possible strategies are present in vertebrates may be found in these fish. Therefore, we have much to learn about self recognition from the study of electroreception.
Collapse
|
14
|
Sim M, Kim D. Electrolocation based on tail-bending movements in weakly electric fish. ACTA ACUST UNITED AC 2011; 214:2443-50. [PMID: 21697437 DOI: 10.1242/jeb.052308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Weakly electric fish generate an electric field with their electric organ to navigate in space, detect objects and communicate with conspecifics. Several studies have examined how electric fish identify objects with their electroreceptors and use electric images for electrolocation. It has been argued that sensor readings from electroreceptors along the rostrocaudal line allow fish to determine the location of a target object. It is well known that the ratio between the maximal slope and the maximal amplitude of the electric image can allow the discrimination of object distances, regardless of object size and conductivity. In order to understand the temporal pattern of electric images, we used a model of electric field perturbation. Using the model, we suggest that the temporal pattern generated at an electrosensor during tail bending is another cue that can be used by the fish to discriminate object distances. The time course of electric sensor signals from a specific electroreceptor when tail-bending movements are applied can provide information about the lateral distance of a target object.
Collapse
Affiliation(s)
- Miyoung Sim
- Biological Cybernetics Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, South Korea
| | | |
Collapse
|
15
|
Imaging in electrosensory systems. Interdiscip Sci 2010; 2:291-307. [PMID: 21153776 DOI: 10.1007/s12539-010-0049-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
This review addresses the biophysical mechanisms of image formation in electrosensory systems. These electrical images are used for navigation and object detection by many species of fish, some amphibians, and some mammals. In the active electrosensory systems of fish these images are formed by the fish's own electric organ discharge. In the passive electrosensory systems of fish, amphibians and mammals the images are formed by external electrical sources. In this review we describe the biophysics of image formation, the effects of the organism's passive electrical properties, the role of exploration, and the influence of context on electroreception. We suggest that the basic principles established in these specialized systems be useful for understanding other more common sensory systems.
Collapse
|
16
|
Comas V, Borde M. Neural substrate of an increase in sensory sampling triggered by a motor command in a gymnotid fish. J Neurophysiol 2010; 104:2147-57. [PMID: 20719924 DOI: 10.1152/jn.00076.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite recent advances that have elucidated the effects of collateral of motor commands on sensory processing structures, the neural mechanisms underlying the modulation of active sensory systems by internal motor-derived signals remains poorly understood. This study deals with the neural basis of the modulation of the motor component of an active sensory system triggered by a central motor command in a gymnotid fish. In Gymnotus omarorum, activation of Mauthner cells, a pair of reticulospinal neurons responsible for the initiation of escape responses in most teleosts, evokes an abrupt and prolonged increase in the rate of the electric organ discharge (EOD), the output signal of the electrogenic component of the active electrosensory system. We show here that prepacemaker neural structures (PPs) that control the discharge of the command nucleus for EODs are key elements of this modulation. Retrograde labeling combined with injections of glutamate at structures that contain labeled neurons showed that PPs are composed of a bilateral group of dispersed brain stem neurons that extend from the diencephalon to the caudal medulla. Blockade of discrete PPs regions during the Mauthner cell-initiated electrosensory modulation indicate that the long duration of this modulation relied on activation of diencephalic PPs, whereas its peak amplitude depended on the recruitment of medullary PPs. Temporal correlation of motor and sensory consequences of Mauthner cell activation suggests that the Mauthner cell-initiated enhancement of electrosensory sampling is involved in the selection of escape trajectory.
Collapse
Affiliation(s)
- Virginia Comas
- Departmento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
17
|
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K. Functional foveae in an electrosensory system. J Comp Neurol 2008; 511:342-59. [DOI: 10.1002/cne.21843] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
von der Emde G, Amey M, Engelmann J, Fetz S, Folde C, Hollmann M, Metzen M, Pusch R. Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. ACTA ACUST UNITED AC 2008; 102:279-90. [PMID: 18992334 DOI: 10.1016/j.jphysparis.2008.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Weakly electric fish can serve as model systems for active sensing because they actively emit electric signals into the environment, which they also perceive with more than 2000 electroreceptor organs (mormyromasts) distributed over almost their entire skin surface. In a process called active electrolocation, animals are able to detect and analyse objects in their environment, which allows them to perceive a detailed electrical picture of their surroundings even in complete darkness. The African mormyrid fish Gnathonemus petersii can not only detect nearby objects, but in addition can perceive other properties such as their distance, their complex electrical impedance, and their three-dimensional shape. Because most of the sensory signals the fish perceive during their nightly activity period are self-produced, evolution has shaped and adapted the mechanisms for signal production, signal perception and signal analysis by the brain. Like in many other sensory systems, so-called prereceptor mechanisms exist, which passively improve the sensory signals in such a way that the signal carrier is optimized for the extraction of relevant sensory information. In G. petersii prereceptor mechanisms include properties of the animal's skin and internal tissue and the shape of the fish's body. These lead to a specific design of the signal carrier at different skin regions of the fish, preparing them to perform certain detection tasks. Prereceptor mechanisms also ensure that the moveable skin appendix of G. petersii, the 'Schnauzenorgan', receives an optimal sensory signal during all stages of its movement. Another important aspect of active sensing in G. petersii concerns the locomotor strategies during electrolocation. When foraging, the animals adopt a particular position with the body slanted forward bringing the so-called 'nasal region' in a position to examine the environment in front of and at the side of the fish. Simultaneously, the Schnauzenorgan performs rhythmic left-right searching movements. When an object of interest is encountered, the Schnauzenorgan is brought in a twitching movement towards the object and is moved over it for further exploration. The densities of electroreceptor organs is extraordinary high at the Schnauzenorgan and, to a lesser extend, at the nasal region. In these so-called foveal regions, the mormyromasts have a different morphology compared to other parts of the electroreceptive skin. Our results on mormyromast density and morphology, prereceptor mechanisms and electric images, central processing of electroreceptive information, and on behavioural strategies of G. petersii lead us to formulate the hypothesis that these fish possess two separate electric foveae, each of which is specialized for certain perceptional tasks.
Collapse
Affiliation(s)
- Gerhard von der Emde
- Universität Bonn, Institut für Zoologie, Neuroethology/Sensory Ecology, Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Castelló ME, Nogueira J, Trujillo-Cenóz O, Caputi AA. Sensory processing in the fast electrosensory pathway of pulse gymnotids studied at multiple integrative levels. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:370-380. [PMID: 17513149 DOI: 10.1016/j.cbpa.2007.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 03/01/2007] [Accepted: 04/07/2007] [Indexed: 11/22/2022]
Abstract
Pulse gymnotids extract information about the environment using the pulsed discharge of an electric organ. Cutaneous electroreceptor organs transduce and encode the changes that objects imprint on the self-generated transcutaneous electric field. This review deals with the role of a neural circuit, the fast electrosensory path of pulse gymnotids, in the streaming of self generated electrosensory signals. The activation of this path triggers a low-responsiveness window slightly shorter than the interval between electric organ discharges. This phenomenon occurs at the electrosensory lateral line lobe where primary afferent terminals project on the somata of spherical neurons. The main subservient mechanism of the low-responsiveness window rely on the intrinsic properties of spherical neurons (dominated by a voltage dependent, low-threshold, non-inactivating and slowly-deactivating K(+) conductance) determining the cell to respond with a single spike followed by a long refractory period. Externally generated signals that randomly occur within the interval between self-generated discharges are likely blocked by the low responsiveness window. Repetitive signals, as those emitted by conspecifics with a slightly lower rate, occur progressively at longer delays beyond the duration of the low responsiveness window. Transient increases of the discharge rate relocate the interference within the low-responsiveness window. We propose that this combination of sensory filtering and electromotor control favors the self-generated signals in detriment of other, securing the continuity of the electrolocation stream.
Collapse
Affiliation(s)
- María E Castelló
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Unidad Asociada de la Facultad de Ciencias, Universidad de la República. Montevideo, Av Italia 3318, 11600, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República. Montevideo, Uruguay
| | - Javier Nogueira
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Unidad Asociada de la Facultad de Ciencias, Universidad de la República. Montevideo, Av Italia 3318, 11600, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República. Montevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Departamento de Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Unidad Asociada de la Facultad de Ciencias, Universidad de la República. Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Unidad Asociada de la Facultad de Ciencias, Universidad de la República. Montevideo, Av Italia 3318, 11600, Uruguay.
| |
Collapse
|
20
|
Caputi AA, Castelló ME, Aguilera PA, Pereira C, Nogueira J, Rodríguez-Cattaneo A, Lezcano C. Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals. ACTA ACUST UNITED AC 2008; 102:256-71. [PMID: 18992336 DOI: 10.1016/j.jphysparis.2008.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Weakly electric fishes "electrically illuminate" the environment in two forms: pulse fishes emit a succession of discrete electric discharges while wave fishes emit a continuous wave. These strategies are present in both taxonomic groups of weakly electric fishes, mormyrids and gymnotids. As a consequence one can distinguish four major types of active electrosensory strategies evolving in parallel. Pulse gymnotids have an electrolocating strategy common with pulse mormyrids, but brains of pulse and wave gymnotids are alike. The beating strategy associated to other differences in the electrogenic system and electrosensory responses suggests that similar hardware might work in a different mode for processing actively generated electrosensory images. In this review we summarize our findings in pulse gymnotids' active electroreception and outline a primary agenda for the next research.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo CP 11600, Uruguay.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Our movements can hinder our ability to sense the world. Movements can induce sensory input (for example, when you hit something) that is indistinguishable from the input that is caused by external agents (for example, when something hits you). It is critical for nervous systems to be able to differentiate between these two scenarios. A ubiquitous strategy is to route copies of movement commands to sensory structures. These signals, which are referred to as corollary discharge (CD), influence sensory processing in myriad ways. Here we review the CD circuits that have been uncovered by neurophysiological studies and suggest a functional taxonomic classification of CD across the animal kingdom. This broad understanding of CD circuits lays the groundwork for more challenging studies that combine neurophysiology and psychophysics to probe the role of CD in perception.
Collapse
|
22
|
Engelmann J, Bacelo J, Metzen M, Pusch R, Bouton B, Migliaro A, Caputi A, Budelli R, Grant K, von der Emde G. Electric imaging through active electrolocation: implication for the analysis of complex scenes. BIOLOGICAL CYBERNETICS 2008; 98:519-539. [PMID: 18491164 DOI: 10.1007/s00422-008-0213-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/29/2008] [Indexed: 05/26/2023]
Abstract
The electric sense of mormyrids is often regarded as an adaptation to conditions unfavourable for vision and in these fish it has become the dominant sense for active orientation and communication tasks. With this sense, fish can detect and distinguish the electrical properties of the close environment, measure distance, perceive the 3-D shape of objects and discriminate objects according to distance or size and shape, irrespective of conductivity, thus showing a degree of abstraction regarding the interpretation of sensory stimuli. The physical properties of images projected on the sensory surface by the fish's own discharge reveal a "Mexican hat" opposing centre-surround profile. It is likely that computation of the image amplitude to slope ratio is used to measure distance, while peak width and slope give measures of shape and contrast. Modelling has been used to explore how the images of multiple objects superimpose in a complex manner. While electric images are by nature distributed, or 'blurred', behavioural strategies orienting sensory surfaces and the neural architecture of sensory processing networks both contribute to resolving potential ambiguities. Rostral amplification is produced by current funnelling in the head and chin appendage regions, where high density electroreceptor distributions constitute foveal regions. Central magnification of electroreceptive pathways from these regions particularly favours the detection of capacitive properties intrinsic to potential living prey. Swimming movements alter the amplitude and contrast of pre-receptor object-images but image modulation is normalised by central gain-control mechanisms that maintain excitatory and inhibitory balance, removing the contrast-ambiguity introduced by self-motion in much the same way that contrast gain-control is achieved in vision.
Collapse
Affiliation(s)
- Jacob Engelmann
- Neuroethology and Sensory Ecology, Institute of Zoology, University of Bonn, Endenicher Allee 11-13, 43115, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rodríguez-Cattaneo A, Pereira AC, Aguilera PA, Crampton WGR, Caputi AA. Species-specific diversity of a fixed motor pattern: the electric organ discharge of Gymnotus. PLoS One 2008; 3:e2038. [PMID: 18461122 PMCID: PMC2323572 DOI: 10.1371/journal.pone.0002038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 02/27/2008] [Indexed: 11/18/2022] Open
Abstract
Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane.
Collapse
Affiliation(s)
- Alejo Rodríguez-Cattaneo
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ana Carolina Pereira
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pedro A. Aguilera
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - William G. R. Crampton
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Angel A. Caputi
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
24
|
Pusch R, von der Emde G, Hollmann M, Bacelo J, Nöbel S, Grant K, Engelmann J. Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol 2008; 211:921-34. [DOI: 10.1242/jeb.014175] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Weakly electric fish generate electric fields with an electric organ and perceive them with cutaneous electroreceptors. During active electrolocation,nearby objects are detected by the distortions they cause in the electric field. The electrical properties of objects, their form and their distance,can be analysed and distinguished. Here we focus on Gnathonemus petersii (Günther 1862), an African fish of the family Mormyridae with a characteristic chin appendix, the Schnauzenorgan. Behavioural and anatomical results suggest that the mobile Schnauzenorgan and the nasal region serve special functions in electroreception, and can therefore be considered as electric foveae. We investigated passive pre-receptor mechanisms that shape and enhance the signal carrier. These mechanisms allow the fish to focus the electric field at the tip of its Schnauzenorgan where the density of electroreceptors is highest (tip-effect). Currents are funnelled by the open mouth (funnelling-effect), which leads to a homogenous voltage distribution in the nasal region. Field vectors at the trunk, the nasal region and the Schnauzenorgan are collimated but differ in the angle at which they are directed onto the sensory surface. To investigate the role of those pre-receptor effects on electrolocation, we recorded electric images of objects at the foveal regions. Furthermore, we used a behavioural response(novelty response) to assess the sensitivity of different skin areas to electrolocation stimuli and determined the receptor densities of these regions. Our results imply that both regions – the Schnauzenorgan and the nasal region – can be termed electric fovea but they serve separate functions during active electrolocation.
Collapse
Affiliation(s)
- Roland Pusch
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Gerhard von der Emde
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Michael Hollmann
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Joao Bacelo
- UNIC, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Sabine Nöbel
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| | - Kirsty Grant
- UNIC, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jacob Engelmann
- University of Bonn, Institute of Zoology, Department Neuroethology/Sensory Ecology, Endenicher Allee 11-13, 43115 Bonn, Germany
| |
Collapse
|
25
|
Caputi AA, Budelli R. Peripheral electrosensory imaging by weakly electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:587-600. [PMID: 16501980 DOI: 10.1007/s00359-006-0100-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 12/04/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Different species have developed different solutions to the problem of constructing a representation of the environment from sensory images projected onto sensory surfaces. Comprehension of how these images are formed is an essential first step in understanding the representation of external reality by a given sensory system. Modeling of the electrical sensory images of objects began with the discovery of electroreception and continues to provide general insights into the mechanisms of imaging. Progress in electric image research has made it possible to establish the physical basis of electric imaging, as well as methods to accurately predict the electric images of objects alone and as a part of a natural electric scene. In this review, we show the following. (1) The internal low resistance of the fish's body shapes the image in two different ways: by funneling the current generated by the electric organ to the sensory surface, it increases the fields rostrally, thus enhancing the perturbation produced by nearby objects; and by increasing the projected image. (2) The electric fish's self-generated currents are modified by capacitive objects in a distinctive manner. These modulations can be detected by different receptor types, yielding the possibility of "electric color." (3) The effects of different objects in a scene interact with each other, generating an image that is different from the simple addition of the images of individual objects, thus causing strong contextual effects.
Collapse
Affiliation(s)
- A A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Unidad Asociada de la Facultad de Ciencias, Universidad de la República, Av. Italia 3318, 11600, Montevideo, Uruguay.
| | | |
Collapse
|
26
|
Migliaro A, Caputi AA, Budelli R. Theoretical analysis of pre-receptor image conditioning in weakly electric fish. PLoS Comput Biol 2005; 1:123-31. [PMID: 16110331 PMCID: PMC1185643 DOI: 10.1371/journal.pcbi.0010016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 06/13/2005] [Indexed: 11/21/2022] Open
Abstract
Electroreceptive fish detect nearby objects by processing the information contained in the pattern of electric currents through the skin. The distribution of local transepidermal voltage or current density on the sensory surface of the fish's skin is the electric image of the surrounding environment. This article reports a model study of the quantitative effect of the conductance of the internal tissues and the skin on electric image generation in Gnathonemus petersii (Günther 1862). Using realistic modelling, we calculated the electric image of a metal object on a simulated fish having different combinations of internal tissues and skin conductances. An object perturbs an electric field as if it were a distribution of electric sources. The equivalent distribution of electric sources is referred to as an object's imprimence. The high conductivity of the fish body lowers the load resistance of a given object's imprimence, increasing the electric image. It also funnels the current generated by the electric organ in such a way that the field and the imprimence of objects in the vicinity of the rostral electric fovea are enhanced. Regarding skin conductance, our results show that the actual value is in the optimal range for transcutaneous voltage modulation by nearby objects. This result suggests that "voltage" is the answer to the long-standing question as to whether current or voltage is the effective stimulus for electroreceptors. Our analysis shows that the fish body should be conceived as an object that interacts with nearby objects, conditioning the electric image. The concept of imprimence can be extended to other sensory systems, facilitating the identification of features common to different perceptual systems.
Collapse
Affiliation(s)
- Adriana Migliaro
- Sección Biomatemática, Instituto de Biología, Facultad de Ciencias, Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ruben Budelli
- Sección Biomatemática, Instituto de Biología, Facultad de Ciencias, Montevideo, Uruguay
| |
Collapse
|
27
|
Pereira AC, Centurión V, Caputi AA. Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish. ACTA ACUST UNITED AC 2005; 208:961-72. [PMID: 15755894 DOI: 10.1242/jeb.01481] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article reports some contextual effects of fish hovering in small environments on active imaging. Foveal electrosensory images of objects and their corresponding evoked responses in the electrosensory lobe are altered in amplitude and waveform when the fish are inside tubes. The article describes: (i) the physical basis of the changes imposed by small environments on electric images, (ii) the field potential responses at the electrosensory lobe of chronically implanted animals when entering and leaving tubes, and (iii) the effect of context on object discrimination. Biophysical analysis indicates that tubes cause a change in the efficiency of a previously described pre-receptor/post-effector mechanism responsible for the electric 'illumination' of nearby objects (as mirrors change the illumination of visual scenes). Field potential responses at the electrosensory lobe showed two components corresponding to the fast- and slow-electrosensory pathways respectively: (a) an early spike following the input without adaptation; (b) a series of waves lasting the rest of the cycle and exhibiting different degrees of adaptation. Discrimination experiments showed that fish react to changes in image rather than to changes in object resistance. The amplitude of the novelty responses evoked by similar changes in the total energy of electric images was constant despite the large change in basal stimulus amplitude and waveform caused by hovering in the tubes. These facts may be explained by the presence of adaptive responses observed at the slow pathway in the electrosensory lobe.
Collapse
Affiliation(s)
- Ana Carolina Pereira
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318. Montevideo Uruguay
| | | | | |
Collapse
|