1
|
Vazquez JI, Gascue V, Quintana L, Migliaro A. Understanding daily rhythms in weakly electric fish: the role of melatonin on the electric behavior of Brachyhypopomus gauderio. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:7-18. [PMID: 37002418 DOI: 10.1007/s00359-023-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.
Collapse
Affiliation(s)
- Juan I Vazquez
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Valentina Gascue
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Quintana
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Adriana Migliaro
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Ramachandran D, Sharma K, Saxena V, Nipu N, Rajapaksha DC, Mennigen JA. Knock-out of vasotocin reduces reproductive success in female zebrafish, Danio rerio. Front Endocrinol (Lausanne) 2023; 14:1151299. [PMID: 37670879 PMCID: PMC10475537 DOI: 10.3389/fendo.2023.1151299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/13/2023] [Indexed: 09/07/2023] Open
Abstract
The vertebrate nonapeptide vasotocin/vasopressin is evolutionarily highly conserved and acts as neuromodulator and endocrine/paracrine signaling molecule. Circumstantial and mechanistic evidence from pharmacological manipulations of the vasotocin system in several teleost fishes suggest sex- and species-specific reproductive roles of vasotocin. While effects of vasotocin on teleost reproductive physiology involve both courtship behaviors and the regulation of the hypothalamic-pituitary-gonadal (HPG) axes, comprehensive studies investigating behavioral and physiological reproductive consequences of genetic ablation of vasotocin in a genetically tractable fish model, such as the zebrafish, are currently lacking. Here, we report the generation of homozygous CRISPR/Cas9-based vasotocin gene knock-out zebrafish. Breeding pairs of vasotocin knock-out fish produce significantly fewer fertilized eggs per clutch compared to wildtype fish, an effect coincident with reduced female quivering courtship behavior. Crossbreeding experiments reveal that this reproductive phenotype is entirely female-dependent, as vasotocin-deficient males reproduce normally when paired with female wild-type fish. Histological analyses of vasotocin knock-out ovaries revealed an overall reduction in oocytes and differential distribution of oocyte maturation stages, demonstrating that the reproductive phenotype is linked to oocyte maturation and release. Ovarian hormone quantification and gene expression analysis in mutant fish indicated reduced synthesis of Prostaglandin F2α, a hormone involved in ovarian maturation, egg release and regulation of female courtship behavior in some cyprinids. However, acute injection of vasotocin did not rescue the female mutant reproductive phenotype, suggesting a contribution of organizational effects of vasotocin. Together, this study provides further support for emerging roles of vasotocin in female teleost reproduction in an important teleost model species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan A. Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Freiler MK, Smith GT. Neuroendocrine mechanisms contributing to the coevolution of sociality and communication. Front Neuroendocrinol 2023; 70:101077. [PMID: 37217079 PMCID: PMC10527162 DOI: 10.1016/j.yfrne.2023.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Communication is inherently social, so signaling systems should evolve with social systems. The 'social complexity hypothesis' posits that social complexity necessitates communicative complexity and is generally supported in vocalizing mammals. This hypothesis, however, has seldom been tested outside the acoustic modality, and comparisons across studies are confounded by varying definitions of complexity. Moreover, proximate mechanisms underlying coevolution of sociality and communication remain largely unexamined. In this review, we argue that to uncover how sociality and communication coevolve, we need to examine variation in the neuroendocrine mechanisms that coregulate social behavior and signal production and perception. Specifically, we focus on steroid hormones, monoamines, and nonapeptides, which modulate both social behavior and sensorimotor circuits and are likely targets of selection during social evolution. Lastly, we highlight weakly electric fishes as an ideal system in which to comparatively address the proximate mechanisms underlying relationships between social and signal diversity in a novel modality.
Collapse
Affiliation(s)
- Megan K Freiler
- Department of Biology, Indiana University, Bloomington, IN, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States.
| | - G Troy Smith
- Department of Biology, Indiana University, Bloomington, IN, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
4
|
Mennigen JA, Ramachandran D, Shaw K, Chaube R, Joy KP, Trudeau VL. Reproductive roles of the vasopressin/oxytocin neuropeptide family in teleost fishes. Front Endocrinol (Lausanne) 2022; 13:1005863. [PMID: 36313759 PMCID: PMC9606234 DOI: 10.3389/fendo.2022.1005863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The vertebrate nonapeptide families arginine vasopressin (AVP) and oxytocin (OXT) are considered to have evolved from a single vasopressin-like peptide present in invertebrates and termed arginine vasotocin in early vertebrate evolution. Unprecedented genome sequence availability has more recently allowed new insight into the evolution of nonapeptides and especially their receptor families in the context of whole genome duplications. In bony fish, nonapeptide homologues of AVP termed arginine vasotocin (Avp) and an OXT family peptide (Oxt) originally termed isotocin have been characterized. While reproductive roles of both nonapeptide families have historically been studied in several vertebrates, their roles in teleost reproduction remain much less understood. Taking advantage of novel genome resources and associated technological advances such as genetic modifications in fish models, we here critically review the current state of knowledge regarding the roles of nonapeptide systems in teleost reproduction. We further discuss sources of plasticity of the conserved nonapeptide systems in the context of diverse reproductive phenotypes observed in teleost fishes. Given the dual roles of preoptic area (POA) synthesized Avp and Oxt as neuromodulators and endocrine/paracrine factors, we focus on known roles of both peptides on reproductive behaviour and the regulation of the hypothalamic-pituitary-gonadal axis. Emphasis is placed on the identification of a gonadal nonapeptide system that plays critical roles in both steroidogenesis and gamete maturation. We conclude by highlighting key research gaps including a call for translational studies linking new mechanistic understanding of nonapeptide regulated physiology in the context of aquaculture, conservation biology and ecotoxicology.
Collapse
Affiliation(s)
- Jan A. Mennigen
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Divya Ramachandran
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Katherine Shaw
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Keerikkattil P. Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Vance L. Trudeau
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| |
Collapse
|
5
|
Pouso P, Perrone R, Silva A. Immunohistochemical description of isotocin neurons and the anatomo-functional comparative analysis between isotocin and vasotocin systems in the weakly electric fish, Gymnotus omaroum. Gen Comp Endocrinol 2021; 313:113886. [PMID: 34411583 DOI: 10.1016/j.ygcen.2021.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
The vasopressin-vasotocin (AVP-AVT) and oxytocin-mesotocin-isotocin (OT-MT-IT) families of nonapeptides are of great importance in shaping context-dependent modulations of a conserved and yet highly plastic network of brain areas involved in social behavior: the social behavior network. The nonapeptide systems of teleost fish are highly conserved and share a common general organization. In this study, we first describe the presence of IT cells and projections in the brain of an electric fish, Gymnotus omarorum. Second, we confirm that IT neuron types and distribution in the preoptic area (POA) follow the same general pattern previously described in other teleost species. Third, we show that although IT and AVT neurons occur intermingled within the POA of G. omarorum and can be classified into the same subgroups, they present subtle but remarkable differences in size, number, and location. Finally, we show that unlike AVT, IT has no effect on basal electric signaling, reinforcing the specificity in the actions that each one of these nonapeptides has on social behavior and communication.
Collapse
Affiliation(s)
- Paula Pouso
- Depto. Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay.
| | - Rossana Perrone
- Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay; Instituto de Fundamentos y Métodos, Facultad de Psicología, Universidad de la República
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Dunlap KD, Koukos HM, Chagnaud BP, Zakon HH, Bass AH. Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior. Front Neural Circuits 2021; 15:713105. [PMID: 34489647 PMCID: PMC8418312 DOI: 10.3389/fncir.2021.713105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
The communication behaviors of vocal fish and electric fish are among the vertebrate social behaviors best understood at the level of neural circuits. Both forms of signaling rely on midbrain inputs to hindbrain pattern generators that activate peripheral effectors (sonic muscles and electrocytes) to produce pulsatile signals that are modulated by frequency/repetition rate, amplitude and call duration. To generate signals that vary by sex, male phenotype, and social context, these circuits are responsive to a wide range of hormones and neuromodulators acting on different timescales at multiple loci. Bass and Zakon (2005) reviewed the behavioral neuroendocrinology of these two teleost groups, comparing how the regulation of their communication systems have both converged and diverged during their parallel evolution. Here, we revisit this comparison and review the complementary developments over the past 16 years. We (a) summarize recent work that expands our knowledge of the neural circuits underlying these two communication systems, (b) review parallel studies on the action of neuromodulators (e.g., serotonin, AVT, melatonin), brain steroidogenesis (via aromatase), and social stimuli on the output of these circuits, (c) highlight recent transcriptomic studies that illustrate how contemporary molecular methods have elucidated the genetic regulation of social behavior in these fish, and (d) describe recent studies of mochokid catfish, which use both vocal and electric communication, and that use both vocal and electric communication and consider how these two systems are spliced together in the same species. Finally, we offer avenues for future research to further probe how similarities and differences between these two communication systems emerge over ontogeny and evolution.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Haley M Koukos
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Boris P Chagnaud
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| | - Harold H Zakon
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Barkan CL, Leininger EC, Zornik E. Everything in modulation: neuromodulators as keys to understanding communication dynamics. Integr Comp Biol 2021; 61:854-866. [PMID: 34038510 DOI: 10.1093/icb/icab102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across the animal kingdom, the ability to produce communication signals appropriate to social encounters is essential, but how these behaviors are selected and adjusted in a context-dependent manner is poorly understood. This question can be addressed on many levels, including sensory processing by peripheral organs and the CNS, sensorimotor integration in decision-making brain regions, and motor circuit activation and modulation. Because neuromodulator systems act at each of these levels, they are a useful lens through which to explore the mechanisms underlying complex patterns of communication. It has been clear for decades that understanding the logic of input-output decision making by the nervous system requires far more than simply identifying the connections linking sensory organs to motor circuits; this is due in part to the fact that neuromodulators can promote distinct and temporally dynamic responses to similar signals. We focus on the vocal circuit dynamics of Xenopus frogs, and describe complementary examples from diverse vertebrate communication systems. While much remains to be discovered about how neuromodulators direct flexibility in communication behaviors, these examples illustrate that several neuromodulators can act upon the same circuit at multiple levels of control, and that the functional consequence of neuromodulation can depend on species-specific factors as well as dynamic organismal characteristics like internal state.
Collapse
Affiliation(s)
| | | | - Erik Zornik
- Reed College, Biology Department, Portland, OR
| |
Collapse
|
8
|
Borde M, Quintana L, Comas V, Silva A. Hormone‐mediated modulation of the electromotor CPG in pulse‐type weakly electric fish. Commonalities and differences across species. Dev Neurobiol 2020; 80:70-80. [DOI: 10.1002/dneu.22732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Michel Borde
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Virginia Comas
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Laboratorio de Neurociencias Facultad de Ciencias Universidad de la República Montevideo Uruguay
| |
Collapse
|
9
|
Silva AC, Pandolfi M. Vasotocinergic control of agonistic behavior told by Neotropical fishes. Gen Comp Endocrinol 2019; 273:67-72. [PMID: 29702104 DOI: 10.1016/j.ygcen.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The hypothalamic neuropeptides of the vasopressin-oxytocin family (and their homologs for non-mammalian species) are key modulators of the Social Brain Network, acting via specific receptors reported in all the nuclei of this network. Different conclusive examples have proven the context-dependency actions of hypothalamic nonapeptides on social behavior in several vertebrate taxa. Teleost fishes provide endless possibilities of experimental model systems to explore the underlying mechanisms of nonapeptide actions on social behavior given that they are the most diverse group of vertebrates. Although it has been difficult to identify commonalities of nonapeptide actions across species, indisputable evidence in many teleost species have demonstrated a clear role of vasotocin in the modulation of aggressive and sexual behaviors. Though Neotropical South American fish contribute an important percentage of teleost diversity, most native species remain unexplored as model systems for the study of the neuroendocrine bases of social behavior. In this review, we will revise recent data on the two model systems of Neotropical fish, South American cichlids and weakly electric fish that have contributed to this issue.
Collapse
Affiliation(s)
- Ana C Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE e IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Comas V, Langevin K, Silva A, Borde M. Distinctive mechanisms underlie the emission of social electric signals of submission in Gymnotus omarorum. J Exp Biol 2019; 222:jeb.195354. [DOI: 10.1242/jeb.195354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/07/2019] [Indexed: 11/20/2022]
Abstract
South American weakly electric fish (order Gymnotiformes) rely on a highly conserved and relatively fixed electromotor circuit to produce species-specific electric organ discharges (EOD) and a variety of meaningful adaptive EOD modulations. The command for each EOD arises from a medullary pacemaker nucleus composed by electrotonically coupled intrinsic pacemaker and bulbospinal projecting relay cells. During agonistic encounters Gymnotus omarorum signals submission by interrupting its EOD (offs) and by emitting transient high rate barrages of low amplitude discharges (chirps). Previous studies in gymnotiformes have shown that electric signal diversity is based on the segregation of descending synaptic inputs to pacemaker or relay cells and differential activation of the neurotransmitter receptors -for glutamate or γ-aminobutyric acid (GABA)- of these cells. Therefore, we tested whether GABAergic and glutamatergic inputs to pacemaker nucleus neurons are involved in the emission of submissive electric signals in G. omarorum. We found that GABA applied to pacemaker cells evokes EOD interruptions that closely resembled natural offs. Although in other species chirping is likely due to glutamatergic suprathreshold depolarization of relay cells, here, application of glutamate to these cells was unable to replicate the emission of this submissive signal. Nevertheless, chirp-like discharges were emitted after the enhancement of excitability of relay cells by blocking an IA-type potassium current and, in some cases, by application of vasotocin, a status-dependent modulator peptide of G. omarorum agonistic behavior. Modulation of electrophysiological properties of pacemaker nucleus neurons in gymnotiformes emerges as a novel putative mechanism, endowing electromotor networks with higher functional versatility.
Collapse
Affiliation(s)
- Virginia Comas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kim Langevin
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Michel Borde
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Migliaro A, Moreno V, Marchal P, Silva A. Daily changes in the electric behavior of weakly electric fish naturally persist in constant darkness and are socially synchronized. Biol Open 2018; 7:bio.036319. [PMID: 30341102 PMCID: PMC6310873 DOI: 10.1242/bio.036319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Daily rhythms allow anticipation of changes and allocation of energy to better cope with predictable events. Rhythms in behavior result from a complex combination of physiological processes timed by the nervous system and synchronized with external information. We aimed to understand how rhythmic behaviors arise in nature, when weakly electric fish are exposed to cyclic environmental influences and social context. Gymnotus omarorum is a South American nocturnal pulse-type gymnotiform. Its electric behavior encodes information about species, sex and physiological state. The rate of emission of the electric organ discharge (EOD-BR) is modulated by exploratory activity and by physical and social environmental stimuli. We show that the EOD-BR increases during the night in the natural habitat even in individuals maintained in constant dark conditions. Locomotor activity is higher at night, however the nocturnal increase of EOD-BR still occurs in motionless fish, demonstrating an independent origin for the locomotor and electric components of exploratory behavior. When fish are observed in nature, social context exerts a synchronizing role on electric behavior. G. omarorum emerges as an exciting wild model for the study of daily rhythms arising in the complexity of the real world, integrating environmental, physical and social cues in the modulation of rhythmic behavior. Summary: The nocturnal increase of electric behavior in Gymnotus omarorum is analyzed in the wild, in constant darkness and social isolation. This daily trait is independent of locomotor activity and modulated by social context.
Collapse
Affiliation(s)
- Adriana Migliaro
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.,Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay
| | - Victoria Moreno
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.,Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay
| | - Paul Marchal
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay.,Ecole Normale Superieure de Lyon, Université Claude Bernard, Lyon 69007, France
| | - Ana Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay .,Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo 11600, Uruguay
| |
Collapse
|
12
|
Perrone R, Silva AC. Status-Dependent Vasotocin Modulation of Dominance and Subordination in the Weakly Electric Fish Gymnotus omarorum. Front Behav Neurosci 2018; 12:1. [PMID: 29403366 PMCID: PMC5778121 DOI: 10.3389/fnbeh.2018.00001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/04/2018] [Indexed: 11/13/2022] Open
Abstract
Dominant-subordinate status emerges from agonistic encounters. The weakly electric fish, Gymnotus omarorum, displays a clear-cut example of non-breeding territorial aggression. The asymmetry in the behavior of dominants and subordinates is outstanding. Dominants are highly aggressive and subordinates signal submission in a precise sequence of locomotor and electric traits: retreating, decreasing their electric organ discharge rate, and emitting transient electric signals. The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homolog arginine-vasopressin, are key modulators of social behavior, known to adapt their actions to different contexts. By analyzing the effects of pharmacological manipulations of the AVT system in both dominants and subordinates, we show evidence of distinct status-dependent actions of AVT. We demonstrate an endogenous effect of AVT on dominants' aggression levels: blocking the V1a AVT receptor induced a significant decrease in dominants' attack rate. AVT administered to subordinates enhanced the expression of the electric signals of submission, without affecting subordinates' locomotor displays. This study contributes a clear example of status-dependent AVT modulation of agonistic behavior in teleosts, and reveals distinctive activation patterns of the AVT system between dominants and subordinates.
Collapse
Affiliation(s)
- Rossana Perrone
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ana C Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Smith GT, Proffitt MR, Smith AR, Rusch DB. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:93-112. [PMID: 29058069 DOI: 10.1007/s00359-017-1223-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Sexually dimorphic behaviors are often regulated by androgens and estrogens. Steroid receptors and metabolism are control points for evolutionary changes in sexual dimorphism. Electric communication signals of South American knifefishes are a model for understanding the evolution and physiology of sexually dimorphic behavior. These signals are regulated by gonadal steroids and controlled by a simple neural circuit. Sexual dimorphism of the signals varies across species. We used transcriptomics to examine mechanisms for sex differences in electric organ discharges (EODs) of two closely related species, Apteronotus leptorhynchus and Apteronotus albifrons, with reversed sexual dimorphism in their EODs. The pacemaker nucleus (Pn), which controls EOD frequency (EODf), expressed transcripts for steroid receptors and metabolizing enzymes, including androgen receptors, estrogen receptors, aromatase, and 5α-reductase. The Pn expressed mRNA for ion channels likely to regulate the high-frequency activity of Pn neurons and for neuromodulator and neurotransmitter receptors that may regulate EOD modulations used in aggression and courtship. Expression of several ion channel genes, including those for Kir3.1 inward-rectifying potassium channels and sodium channel β1 subunits, was sex-biased or correlated with EODf in ways consistent with EODf sex differences. Our findings provide a basis for future studies to characterize neurogenomic mechanisms by which sex differences evolve.
Collapse
Affiliation(s)
- G Troy Smith
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA. .,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
| | - Melissa R Proffitt
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - Adam R Smith
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
14
|
Pouso P, Radmilovich M, Silva A. An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio. Tissue Cell 2017; 49:257-269. [PMID: 28242105 DOI: 10.1016/j.tice.2017.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/21/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system.
Collapse
Affiliation(s)
- Paula Pouso
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay
| | - Milka Radmilovich
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
15
|
Perrone R, Silva A. Vasotocin increases dominance in the weakly electric fish Brachyhypopomus gauderio. ACTA ACUST UNITED AC 2016; 110:119-126. [PMID: 27940222 DOI: 10.1016/j.jphysparis.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Animals establish social hierarchies through agonistic behavior. The recognition of the own and others social ranks is crucial for animals that live in groups to avoid costly constant conflicts. Weakly electric fish are valuable model systems for the study of agonistic behavior and its neuromodulation, given that they display conspicuous electrocommunication signals that are generated by a very well-known electromotor circuit. Brachyhypopomus gauderio is a gregarious electric fish, presents a polygynous breeding system, morphological and electrophysiological sexual dimorphism during the breeding season, and displays a typical intrasexual reproduction-related aggression. Dominants signal their social status by increasing their electric organ discharge (EOD) rate after an agonistic encounter (electric dominance). Subordinates only occasionally produce transient electric signals (chirps and offs). The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homologue, arginine- vasopressin (AVP) are key modulators of social behavior across vertebrates. In this study, we focus on the role of AVT on dominance establishment in Brachyhypopomus gauderio by analyzing the effects of pharmacological manipulations of the AVT system in potential dominants. AVT exerts a very specific direct effect restricted only to EOD rate, and is responsible for the electric dominance. Unexpectedly, AVT did not affect the intensity of aggression in either contender. Nor was the time structure affected by AVT administration. We also present two interesting examples of the interplay between contenders by evaluating how AVT modulations, even when directed to one individual, affect the behavior of the dyad as a unit. First, we found that V1a AVT receptor antagonist Manning Compound (MC) induces a reversion in the positive correlation between dominants' and subordinates' attack rates, observed in both control and AVT treated dyads, suggesting that an endogenous AVT tone modulates aggressive interactions. Second, we confirmed that AVT administered to dominants induces an increase in the submissive transient electric signals in subordinates.
Collapse
Affiliation(s)
- Rossana Perrone
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600 Montevideo, Uruguay.
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay.
| |
Collapse
|
16
|
Migliaro A, Silva A. Melatonin Regulates Daily Variations in Electric Behavior Arousal in Two Species of Weakly Electric Fish with Different Social Structures. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:232-41. [DOI: 10.1159/000445494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
Abstract
Timing is crucial for social interactions. Animal behavior is synchronized with biotic and abiotic environment variables ensuring that the activity phase of conspecifics occurs during the same period of the day. As biological rhythms are embedded in the complex integrative control of the brain, it is fundamental to explore its interaction with environmental and social factors. This approach will unravel the link between external stimuli carrying information on environmental cycles and the neural commands for behavior, including social behavior, associated with precise phases of those cycles. Arousal in the solitary Gymnotus omarorum and in the gregarious Brachyhypopomus gauderio is characterized by a nocturnal increase in the basal discharge rate of electric behavior, which is mild and transient in G. omarorum and large and persistent in B. gauderio. In this study, we show that the major integrator of social behavior, AVT (arginine vasotocin), is not involved in the nocturnal increase of electric behavior basal rate in isolated animals of either species. On the other hand, endogenous melatonin, the major modulator of the circadian system, is responsible for the nocturnal increase in electric behavior in isolated individuals of both species.
Collapse
|
17
|
Pouso P, Quintana L, López GC, Somoza GM, Silva AC, Trudeau VL. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio. Gen Comp Endocrinol 2015; 222:158-66. [PMID: 26141148 DOI: 10.1016/j.ygcen.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/08/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Secretoneurin (SN) in the preoptic area and pituitary of mammals and fish has a conserved close association with the vasopressin and oxytocin systems, members of a peptide family that are key in the modulation of sexual and social behaviors. Here we show the presence of SN-immunoreactive cells and projections in the brain of the electric fish, Brachyhypopomus gauderio. Secretoneurin colocalized with vasotocin (AVT) and isotocin in cells and fibers of the preoptic area. In the rostral pars distalis of the pituitary, many cells were both SN and prolactin-positive. In the hindbrain, at the level of the command nucleus of the electric behavior (pacemaker nucleus; PN), some of SN-positive fibers colocalized with AVT. We also explored the potential neuromodulatory role of SN on electric behavior, specifically on the rate of the electric organ discharge (EOD) that signals arousal, dominance and subordinate status. Each EOD is triggered by the command discharge of the PN, ultimately responsible for the basal EOD rate. SN modulated diurnal basal EOD rate in freely swimming fish in a context-dependent manner; determined by the initial value of EOD rate. In brainstem slices, SN partially mimicked the in vivo behavioral effects acting on PN firing rate. Taken together, our results suggest that SN may regulate electric behavior, and that its effect on EOD rate may be explained by direct action of SN at the PN level through either neuroendocrine and/or endocrine mechanisms.
Collapse
Affiliation(s)
- Paula Pouso
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, 11600 Montevideo, Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, 11600 Montevideo, Uruguay
| | - Gabriela C López
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIBINTECH), Provincia de Buenos Aires, Argentina
| | - Gustavo M Somoza
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIBINTECH), Provincia de Buenos Aires, Argentina
| | - Ana C Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|