1
|
Lee Y, Alam MR, Park H, Yim K, Seo KJ, Hwang G, Kim D, Chung Y, Gong G, Cho NH, Yoo CW, Chong Y, Choi HJ. Improved Diagnostic Accuracy of Thyroid Fine-Needle Aspiration Cytology with Artificial Intelligence Technology. Thyroid 2024; 34:723-734. [PMID: 38874262 DOI: 10.1089/thy.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Background: Artificial intelligence (AI) is increasingly being applied in pathology and cytology, showing promising results. We collected a large dataset of whole slide images (WSIs) of thyroid fine-needle aspiration cytology (FNA), incorporating z-stacking, from institutions across the nation to develop an AI model. Methods: We conducted a multicenter retrospective diagnostic accuracy study using thyroid FNA dataset from the Open AI Dataset Project that consists of digitalized images samples collected from 3 university hospitals and 215 Korean institutions through extensive quality check during the case selection, scanning, labeling, and reviewing process. Multiple z-layer images were captured using three different scanners and image patches were extracted from WSIs and resized after focus fusion and color normalization. We pretested six AI models, determining Inception ResNet v2 as the best model using a subset of dataset, and subsequently tested the final model with total datasets. Additionally, we compared the performance of AI and cytopathologists using randomly selected 1031 image patches and reevaluated the cytopathologists' performance after reference to AI results. Results: A total of 10,332 image patches from 306 thyroid FNAs, comprising 78 malignant (papillary thyroid carcinoma) and 228 benign from 86 institutions were used for the AI training. Inception ResNet v2 achieved highest accuracy of 99.7%, 97.7%, and 94.9% for training, validation, and test dataset, respectively (sensitivity 99.9%, 99.6%, and 100% and specificity 99.6%, 96.4%, and 90.4% for training, validation, and test dataset, respectively). In the comparison between AI and human, AI model showed higher accuracy and specificity than the average expert cytopathologists beyond the two-standard deviation (accuracy 99.71% [95% confidence interval (CI), 99.38-100.00%] vs. 88.91% [95% CI, 86.99-90.83%], sensitivity 99.81% [95% CI, 99.54-100.00%] vs. 87.26% [95% CI, 85.22-89.30%], and specificity 99.61% [95% CI, 99.23-99.99%] vs. 90.58% [95% CI, 88.80-92.36%]). Moreover, after referring to the AI results, the performance of all the experts (accuracy 96%, 95%, and 96%, respectively) and the diagnostic agreement (from 0.64 to 0.84) increased. Conclusions: These results suggest that the application of AI technology to thyroid FNA cytology may improve the diagnostic accuracy as well as intra- and inter-observer variability among pathologists. Further confirmatory research is needed.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Mohammad Rizwan Alam
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Hongsik Park
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Kwangil Yim
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Kyung Jin Seo
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | | | | | | | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Chong Woo Yoo
- Department of Pathology, National Cancer Center, Ilsan, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Hyun Joo Choi
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| |
Collapse
|
2
|
Kim D, Sundling KE, Virk R, Thrall MJ, Alperstein S, Bui MM, Chen-Yost H, Donnelly AD, Lin O, Liu X, Madrigal E, Michelow P, Schmitt FC, Vielh PR, Zakowski MF, Parwani AV, Jenkins E, Siddiqui MT, Pantanowitz L, Li Z. Digital cytology part 2: artificial intelligence in cytology: a concept paper with review and recommendations from the American Society of Cytopathology Digital Cytology Task Force. J Am Soc Cytopathol 2024; 13:97-110. [PMID: 38158317 DOI: 10.1016/j.jasc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Digital cytology and artificial intelligence (AI) are gaining greater adoption in the cytology laboratory. However, peer-reviewed real-world data and literature are lacking in regard to the current clinical landscape. The American Society of Cytopathology in conjunction with the International Academy of Cytology and the Digital Pathology Association established a special task force comprising 20 members with expertise and/or interest in digital cytology. The aim of the group was to investigate the feasibility of incorporating digital cytology, specifically cytology whole slide scanning and AI applications, into the workflow of the laboratory. In turn, the impact on cytopathologists, cytologists (cytotechnologists), and cytology departments were also assessed. The task force reviewed existing literature on digital cytology, conducted a worldwide survey, and held a virtual roundtable discussion on digital cytology and AI with multiple industry corporate representatives. This white paper, presented in 2 parts, summarizes the current state of digital cytology and AI practice in global cytology practice. Part 1 of the white paper is presented as a separate paper which details a review and best practice recommendations for incorporating digital cytology into practice. Part 2 of the white paper presented here provides a comprehensive review of AI in cytology practice along with best practice recommendations and legal considerations. Additionally, the cytology global survey results highlighting current AI practices by various laboratories, as well as current attitudes, are reported.
Collapse
Affiliation(s)
- David Kim
- Department of Pathology & Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Kaitlin E Sundling
- The Wisconsin State Laboratory of Hygiene and Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Renu Virk
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Michael J Thrall
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Susan Alperstein
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | - Marilyn M Bui
- The Department of Pathology, Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Amber D Donnelly
- Diagnostic Cytology Education, University of Nebraska Medical Center, College of Allied Health Professions, Omaha, Nebraska
| | - Oscar Lin
- Department of Pathology & Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Emilio Madrigal
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Pamela Michelow
- Division of Anatomical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; Department of Pathology, National Health Laboratory Services, Johannesburg, South Africa
| | - Fernando C Schmitt
- Department of Pathology, Medical Faculty of Porto University, Porto, Portugal
| | - Philippe R Vielh
- Department of Pathology, Medipath and American Hospital of Paris, Paris, France
| | | | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Momin T Siddiqui
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
3
|
Levy JJ, Chan N, Marotti JD, Kerr DA, Gutmann EJ, Glass RE, Dodge CP, Suriawinata AA, Christensen B, Liu X, Vaickus LJ. Large-scale validation study of an improved semiautonomous urine cytology assessment tool: AutoParis-X. Cancer Cytopathol 2023; 131:637-654. [PMID: 37377320 PMCID: PMC11251731 DOI: 10.1002/cncy.22732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adopting a computational approach for the assessment of urine cytology specimens has the potential to improve the efficiency, accuracy, and reliability of bladder cancer screening, which has heretofore relied on semisubjective manual assessment methods. As rigorous, quantitative criteria and guidelines have been introduced for improving screening practices (e.g., The Paris System for Reporting Urinary Cytology), algorithms to emulate semiautonomous diagnostic decision-making have lagged behind, in part because of the complex and nuanced nature of urine cytology reporting. METHODS In this study, the authors report on the development and large-scale validation of a deep-learning tool, AutoParis-X, which can facilitate rapid, semiautonomous examination of urine cytology specimens. RESULTS The results of this large-scale, retrospective validation study indicate that AutoParis-X can accurately determine urothelial cell atypia and aggregate a wide variety of cell-related and cluster-related information across a slide to yield an atypia burden score, which correlates closely with overall specimen atypia and is predictive of Paris system diagnostic categories. Importantly, this approach accounts for challenges associated with the assessment of overlapping cell cluster borders, which improve the ability to predict specimen atypia and accurately estimate the nuclear-to-cytoplasm ratio for cells in these clusters. CONCLUSIONS The authors developed a publicly available, open-source, interactive web application that features a simple, easy-to-use display for examining urine cytology whole-slide images and determining the level of atypia in specific cells, flagging the most abnormal cells for pathologist review. The accuracy of AutoParis-X (and other semiautomated digital pathology systems) indicates that these technologies are approaching clinical readiness and necessitates full evaluation of these algorithms in head-to-head clinical trials.
Collapse
Affiliation(s)
- Joshua J. Levy
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766
- Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
- Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| | - Natt Chan
- Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| | - Jonathan D. Marotti
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766
- Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| | - Darcy A. Kerr
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766
- Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| | - Edward J. Gutmann
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766
- Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| | | | | | - Arief A. Suriawinata
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766
- Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| | - Brock Christensen
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
- Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
- Department of Community and Family Medicine, Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| | - Xiaoying Liu
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766
- Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| | - Louis J. Vaickus
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766
- Dartmouth College Geisel School of Medicine, Hanover, NH, 03756
| |
Collapse
|
4
|
Chantziantoniou N. BestCyte® primary screening of 500 ThinPrep Pap Test thin-layers: 3 Cytologists' Interobserver diagnostic concordance with predicate manual microscopy relative to Truth Reference diagnoses defining NILM, ASCUS+, LSIL+, and ASCH+ thresholds for specificity, sensitivity, and equivalency grading. J Pathol Inform 2023; 14:100182. [PMID: 36747889 PMCID: PMC9898738 DOI: 10.1016/j.jpi.2022.100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background The BestCyte® Cell Sorter Imaging System (BestCyte) facilitates algorithmic discrimination of clinically relevant cells in Pap test cytopathology by classifying and projecting images of cells in galleries based on cytomorphology. Warranted is awareness of potential BestCyte advantages as measured through 3 cytologists' interobserver diagnostic concordance, specificity and sensitivity differentials, and equivalency grading relative to manual microscopy (MM). Objectives Using 500 MM-reported ThinPrep thin-layers, analyze: (1) cytologists' blinded BestCyte screening to raise Bethesda diagnoses; (2) correlate BestCyte and MM diagnoses (i.e., predicate) to establish Truth Reference Diagnoses (TRDx) from concordance between 4 possible diagnoses; (3) analyze cytologists' and MM predicate diagnoses through 4 diagnostic thresholds defined by TRDx: NILM (Negative) for specificity, and ASCUS+, LSIL+, and ASCH+ (Positive) for graded sensitivity (with abnormal cells decreasing in size with increasing dysplasia); and, (4) statistically determine cytologists' equivalency grading to MM using 95% Confidence Interval (CI) ranges. Results 500 TRDx breakdown (n/%): NILM (241/48.2), ASCUS (79/15.8), ASCH (9/1.80), AGUS (2/0.40), LSIL (86/17.2), HSIL (68/13.6), CA (2/0.40), UNSAT (13/2.60). TRDx breakdown (n/%) per 4 of 4, 3 of 4, 2 of 4 diagnostic concordances: 264 (52.8%), 182 (36.4%), 54 (10.8%), respectively. No cases of discordant diagnoses were recorded. HSIL TRDx were established from 66.2% of 4 of 4 concordances, followed by NILM (59.3%), LSIL (46.5%), ASCUS (41.8%); antithetically, from 4.40% of 2 of 4 concordances. Specificity for MM predicate (NILM): 67.08%; for Cytologists 1, 2, and 3: 89.71%, 82.30%, 97.53%, respectively. For NILM threshold, cytologists revealed Significantly Superior equivalency to MM. Sensitivity for ASCUS+, LSIL+, and ASCH+ thresholds: MM (91.36%, 86.67%, 74.36%); Cytologist 1 (95.88%, 96.97%, 94.87%); Cytologist 2 (95.47%, 95.76%, 93.59%), Cytologist 3 (94.65%, 95.15%, 98.72%), respectively. Cytologists revealed Significantly Superior equivalency to MM for graded Positive thresholds; with Cytologist 3 for ASCUS+ being: Superior. Conclusions BestCyte detects and efficiently displays abnormal cells in strategic galleries standardizing objectivity by systematizing mosaics of cell-types for cytologists' consideration. BestCyte fosters consistent, enhanced cytologists' sensitivity values for the ASCUS+, LSIL+, and ASCH+ Positive thresholds relative to MM. Also, BestCyte facilitates improved specificity and superior equivalency grading to MM reflecting efficient screening, and reduced labor. Confident interpretations of small dysplastic epithelial cells characteristic of HSIL led to exceptional interobserver diagnostic concordance inferring BestCyte is primed for effective cervical cancer screening practice.
Collapse
|