1
|
Zhang P, Gong JS, Qin J, Li H, Hou HJ, Zhang XM, Xu ZH, Shi JS. Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination. Crit Rev Biotechnol 2021; 41:1257-1278. [PMID: 33985392 DOI: 10.1080/07388551.2021.1921690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/26/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Owing to their numerous nutritional and bioactive functions, phospholipids (PLs), which are major components of biological membranes in all living organisms, have been widely applied as nutraceuticals, food supplements, and cosmetic ingredients. To date, PLs are extracted solely from soybean or egg yolk, despite the diverse market demands and high cost, owing to a tedious and inefficient manufacturing process. A microbial-based manufacturing process, specifically phospholipase D (PLD)-based biocatalysis and biotransformation process for PLs, has the potential to address several challenges associated with the soybean- or egg yolk-based supply chain. However, poor enzyme properties and inefficient microbial expression systems for PLD limit their wide industrial dissemination. Therefore, sourcing new enzyme variants with improved properties and developing advanced PLD expression systems are important. In the present review, we systematically summarize recent achievements and trends in the discovery, their structural properties, catalytic mechanisms, expression strategies for enhancing PLD production, and its multiple applications in the context of PLs. This review is expected to assist researchers to understand current advances in this field and provide insights for further molecular engineering efforts toward PLD-mediated bioprocessing.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Hai-Juan Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
2
|
Cloning, Characterization, and Functional Expression of Phospholipase D α cDNA from Banana ( Musa acuminate L.). J FOOD QUALITY 2017. [DOI: 10.1155/2017/2510949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase D (PLD) plays a key role in adaptive responses of postharvest fruits. A cDNA clone of banana (Musa acuminate L.) PLDα (MaPLDα) was obtained by RT-PCR in this study. The MaPLDα gene contains a complete open reading frame (ORF) encoding a 92-kDa protein composed of 832 amino acid residues and possesses a characteristic C2 domain and two catalytic H×K×××D (abbr. HKD) motifs. The two HKD motifs are separated by 341 amino acid residues in the primary structure. Relatively higher PLD activity and expression of MaPLDα mRNA were detected in developing tissues compared to senescent or mature tissues in individual leaves, flower, stem, and fruit organs, respectively. The expression profile of PLDα mRNA in postharvest banana fruits at different temperatures was determined, and the MaPLDα mRNA reached the highest expression peak on day 5 at 25°C and on day 7 at 12°C. The results provide useful information for maintaining postharvest quality and extending the storage life of banana fruit.
Collapse
|
3
|
Functional Characterization of the N-Terminal C2 Domain from Arabidopsis thaliana Phospholipase D α and D β. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2721719. [PMID: 28101506 PMCID: PMC5215601 DOI: 10.1155/2016/2721719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022]
Abstract
Most of plant phospholipases D (PLD) exhibit a C2-lipid binding domain of around 130 amino acid residues at their N-terminal region, involved in their Ca2+-dependent membrane binding. In this study, we expressed and partially purified catalytically active PLDα from Arabidopsis thaliana (AtPLDα) in the yeast Pichia pastoris. The N-terminal amino acid sequence of the recombinant AtPLDα was found to be NVEETIGV and thus to lack the first 35 amino acid belonging to the C2 domain, as found in other recombinant or plant purified PLDs. To investigate the impact of such a cleavage on the functionality of C2 domains, we expressed, in E. coli, purified, and refolded the mature-like form of the C2 domain of the AtPLDα along with its equivalent C2 domain of the AtPLDβ, for the sake of comparison. Using Förster Resonance Energy Transfer and dot-blot assays, both C2 domains were shown to bind phosphatidylglycerol in a Ca2+-independent manner while phosphatidic acid and phosphatidylserine binding were found to be enhanced in the presence of Ca2+. Amino acid sequence alignment and molecular modeling of both C2 domains with known C2 domain structures revealed the presence of a novel Ca2+-binding site within the C2 domain of AtPLDα.
Collapse
|
4
|
Rahier R, Noiriel A, Abousalham A. Development of a Direct and Continuous Phospholipase D Assay Based on the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline. Anal Chem 2015; 88:666-74. [DOI: 10.1021/acs.analchem.5b02332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Renaud Rahier
- Institut
de Chimie et de Biochimie Moléculaires
et Supramoléculaires (ICBMS) UMR 5246 CNRS, Université Claude Bernard Lyon 1, Organisation
et Dynamique des Membranes Biologiques, Bâtiment Raulin, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Alexandre Noiriel
- Institut
de Chimie et de Biochimie Moléculaires
et Supramoléculaires (ICBMS) UMR 5246 CNRS, Université Claude Bernard Lyon 1, Organisation
et Dynamique des Membranes Biologiques, Bâtiment Raulin, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Abdelkarim Abousalham
- Institut
de Chimie et de Biochimie Moléculaires
et Supramoléculaires (ICBMS) UMR 5246 CNRS, Université Claude Bernard Lyon 1, Organisation
et Dynamique des Membranes Biologiques, Bâtiment Raulin, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
5
|
Khatoon H, Mansfeld J, Schierhorn A, Ulbrich-Hofmann R. Purification, sequencing and characterization of phospholipase D from Indian mustard seeds. PHYTOCHEMISTRY 2015; 117:65-75. [PMID: 26057230 DOI: 10.1016/j.phytochem.2015.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
Phospholipase D (PLD; E.C. 3.1.4.4) is widespread in plants where it fulfills diverse functions in growth and in the response to stresses. The enzyme occurs in multiple forms that differ in their biochemical properties. In the present paper PLD from medicinally relevant Indian mustard seeds was purified by Ca(2+)-mediated hydrophobic interaction and anion exchange chromatography to electrophoretic homogeneity. Based on mass-spectrometric sequence analysis of tryptic protein fragments, oligonucleotide primers for cloning genomic DNA fragments that encoded the enzyme were designed and used to derive the complete amino acid sequence of this PLD. The sequence data, as well as the molecular properties (molecular mass of 92.0 kDa, pI 5.39, maximum activity at pH 5.5-6.0 and Ca(2+) ion concentrations ⩾60 mM), allowed the assignment of this enzyme to the class of α-type PLDs. The apparent kinetic parameters Vmax and Km, determined for the hydrolysis of phosphatidylcholine (PC) in an aqueous mixed-micellar system were 356±15 μmol min(-1) mg(-1) and 1.84±0.17 mM, respectively. Phosphate analogs such as NaAlF4 and Na3VO4 displayed strong inhibition of the enzyme. Phosphatidylinositol 4,5-bisphosphate had a strong activating effect at 2-10 mM CaCl2. PLD was inactivated at temperatures >45 °C. The enzyme exhibited the highest activity toward PC followed by phosphatidylethanolamine and phosphatidylglycerol. PCs with short-chain fatty acids were better substrates than PCs with long fatty acid chains. Lyso-PC was not accepted as substrate.
Collapse
Affiliation(s)
- Hafeeza Khatoon
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Johanna Mansfeld
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Angelika Schierhorn
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Renate Ulbrich-Hofmann
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany.
| |
Collapse
|
6
|
Pinedo M, Orts F, Carvalho ADO, Regente M, Soares JR, Gomes VM, de la Canal L. Molecular characterization of Helja, an extracellular jacalin-related protein from Helianthus annuus: Insights into the relationship of this protein with unconventionally secreted lectins. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:144-53. [PMID: 26140981 DOI: 10.1016/j.jplph.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/21/2015] [Accepted: 06/11/2015] [Indexed: 05/25/2023]
Abstract
Jacalin-related lectins (JRLs) encompass cytosolic, nuclear and vacuolar members displaying the jacalin domain in one or more copies or in combination with unrelated domains. Helianthus annuus jacalin (Helja) is a mannose-specific JRL previously identified in the apoplast of Helianthus annuus seedlings, and this protein has been proposed to follow unconventional secretion. Here, we describe the full-length Helja cDNA sequence, which presents a unique jacalin domain (merolectin) and the absence of a signal peptide, confirming that the protein cannot follow the classical ER-dependent secretory pathway. Helja mRNA is present in seeds, cotyledons, roots and hypocotyls, but no transcripts were detected in the leaves. Searches for sequence similarity showed that Helja is barely similar to other JRLs present in H. annuus databases and less than 45% identical to other monocot or dicot JRLs. Strikingly, most of the merolectins recovered through data mining using Helja as a query were predicted as apoplastic, although most of these proteins lack the signal peptide required for classical secretion. Thus, Helja is the first bait identified to recover putative unconventionally secreted lectins. Because the recovered JRLs are widely distributed among the plant kingdom, an as yet unknown role for jacalin lectins in the apoplast is emerging.
Collapse
Affiliation(s)
- Marcela Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Facundo Orts
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil.
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Julia Ribeiro Soares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil.
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| |
Collapse
|
7
|
Corti Monzón G, Pinedo M, Di Rienzo J, Novo-Uzal E, Pomar F, Lamattina L, de la Canal L. Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses. Nitric Oxide 2014; 39:20-8. [PMID: 24747108 DOI: 10.1016/j.niox.2014.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023]
Abstract
Nitric oxide (NO) is a signal molecule involved in several physiological processes in plants, including root development. Despite the importance of NO as a root growth regulator, the knowledge about the genes and metabolic pathways modulated by NO in this process is still limited. A constraint to unravel these pathways has been the use of exogenous applications of NO donors that may produce toxic effects. We have analyzed the role of NO in root architecture through the depletion of endogenous NO using the scavenger cPTIO. Sunflower seedlings growing in liquid medium supplemented with cPTIO showed unaltered primary root length while the number of lateral roots was deeply reduced; indicating that endogenous NO participates in determining root branching in sunflower. The transcriptional changes induced by NO depletion have been analyzed using a large-scale approach. A microarray analysis showed 330 genes regulated in the roots (p≤0.001) upon endogenous NO depletion. A general cPTIO-induced up-regulation of genes involved in the lignin biosynthetic pathway was observed. Even if no detectable changes in total lignin content could be detected, cell walls analyses revealed that the ratio G/S lignin increased in roots treated with cPTIO. This means that endogenous NO may control lignin composition in planta. Our results suggest that a fine tuning regulation of NO levels could be used by plants to regulate root architecture and lignin composition. The functional implications of these findings are discussed.
Collapse
Affiliation(s)
- Georgina Corti Monzón
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina.
| | - Marcela Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina.
| | - Julio Di Rienzo
- Cátedra de Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Esther Novo-Uzal
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain.
| | - Federico Pomar
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidade da Coruña, A Coruña, Spain.
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina.
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina.
| |
Collapse
|
8
|
Identification of a new phospholipase D in Carica papaya latex. Gene 2012; 499:243-9. [PMID: 22450361 DOI: 10.1016/j.gene.2012.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/21/2012] [Accepted: 03/04/2012] [Indexed: 11/24/2022]
Abstract
Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family.
Collapse
|
9
|
Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, Romanov GA, Kravets VS. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. BIOCHEMISTRY (MOSCOW) 2012; 77:1-14. [DOI: 10.1134/s0006297912010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Abdelkafi S, Abousalham A. The substrate specificities of sunflower and soybean phospholipases D using transphosphatidylation reaction. Lipids Health Dis 2011; 10:196. [PMID: 22044447 PMCID: PMC3222616 DOI: 10.1186/1476-511x-10-196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Phospholipase D (PLD) belongs to a lipolytic enzyme subclass which catalyzes the hydrolysis and transesterification of glycerophospholipids at the terminal phosphodiester bond. RESULTS In this work, we have studied the substrate specificity of PLDs from germinating sunflower seeds and cultured-soybean cells, using their capacity of transphosphatidylation. In the presence of a nucleophilic acceptor, such as [¹⁴C]ethanol, PLD catalyzes the production of phosphatidyl-[¹⁴C]-ethanol. The resulting product is easily identified since it is well separated from the other lipids by thin-layer chromatography. The main advantage of this assay is that the phospholipid used as substrate does not need to be radiolabelled and thus allow us a large choice of polar heads and fatty acids. In vitro, we observed that sunflower and soybean cell PLD show the following decreasing order of specificity: phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol; while phosphatidylserine and phosphatidylinositol are utilized much less efficiently. CONCLUSIONS The substrate specificity is modulated by the fatty acid composition of the phosphatidylcholine used as well as by the presence of other charged phospholipids.
Collapse
Affiliation(s)
- Slim Abdelkafi
- Organization and Dynamics of Biological Membranes, UMR 5246 ICBMS, CNRS-Université Claude Bernard Lyon 1, Bâtiment Raulin, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne, Cedex, France
- Université de Sfax, Centre de Biotechnologie de Sfax, Laboratoire des Bio-Procédés Environnementaux, Sfax, Tunisia
| | - Abdelkarim Abousalham
- Organization and Dynamics of Biological Membranes, UMR 5246 ICBMS, CNRS-Université Claude Bernard Lyon 1, Bâtiment Raulin, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne, Cedex, France
| |
Collapse
|
11
|
Abdelkafi S, Abousalham A. Kinetic study of sunflower phospholipase Dα: interactions with micellar substrate, detergents and metals. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:752-757. [PMID: 21353787 DOI: 10.1016/j.plaphy.2011.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 02/02/2011] [Indexed: 05/30/2023]
Abstract
Phospholipase Dα (PLDα) purified from six-day post-germinated sunflower seeds was inactive in vitro on bilamellar substrates. It was fully active on mixed micelles made with phospholipids and a mixture of Triton-X100 and SDS at equal concentrations. It had an absolute need for divalent ions and calcium ions at millimolar concentration were the most efficient. Calcium had two effects. Firstly, using the fluorescent probe 2-p-toluidinylnaphtalene-6-sulfonate, we showed that the enzyme was able to bind calcium with a dissociation constant of 40-50 mM. This high value is probably due to the modification of the C2 domain which lacks some coordination residues allowing the binding of the metal. Secondly, using turbidity measurements, we showed that the metal ions interact with the SDS contained in the mixed micelles thus leading to an aggregated form of the substrate which is more easily hydrolyzed by PLDα.
Collapse
Affiliation(s)
- Slim Abdelkafi
- Organization and Dynamics of Biological Membranes, UMR 5246 ICBMS, CNRS-Université Claude Bernard Lyon 1, Bâtiment Raulin, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, Cedex, France
| | | |
Collapse
|