1
|
Colina JR, Suwalsky M, Petit K, Contreras D, Manrique-Moreno M, Jemiola-Rzeminska M, Strzalka K. In vitro evaluation of the protective effect of crocin on human erythrocytes. Biophys Chem 2021; 281:106738. [PMID: 34920397 DOI: 10.1016/j.bpc.2021.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/02/2022]
Abstract
The interactions and the protective effect of the carotenoid crocin (CRO) on human erythrocytes (RBC) and molecular models of its membrane were investigated. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the RBC membrane, respectively. X-ray diffraction, differential scanning calorimetry (DSC) and electronic paramagnetic resonance spectroscopy (EPR) showed that CRO produced structural perturbations in DMPC bilayers and in isolated unsealed human erythrocyte membranes. On the other hand, scanning electron microscopy (SEM) showed that CRO induced shape changes in the RBC from their normal discoid form to echinocytes. This result indicates that the CRO molecules were mainly localized in the outer monolayer of the RBC membrane. The assessment of the protective capacity of CRO was revealed by the carotenoid inhibition of the morphological alterations caused by hypochlorous acid (HOCl) to RBC.
Collapse
Affiliation(s)
- José R Colina
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Karla Petit
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - David Contreras
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | | | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Cheong KY, Firlar E, Ficaro L, Gorbunov MY, Kaelber JT, Falkowski PG. Saturation of thylakoid-associated fatty acids facilitates bioenergetic coupling in a marine diatom allowing for thermal acclimation. GLOBAL CHANGE BIOLOGY 2021; 27:3133-3144. [PMID: 33749034 DOI: 10.1111/gcb.15612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
In a rapidly warming world, we ask, "What limits the potential of marine diatoms to acclimate to elevated temperatures?," a group of ecologically successful unicellular eukaryotic photoautotrophs that evolved in a cooler ocean and are critical to marine food webs. To this end, we examined thermal tolerance mechanisms related to photosynthesis in the sequenced and transformable model diatom Phaeodactylum tricornutum. Data from transmission electron microscopy (TEM) and fatty acid methyl ester-gas chromatography mass spectrometry (FAME-GCMS) suggest that saturating thylakoid-associated fatty acids allowed rapid (on the order of hours) thermal tolerance up to 28.5°C. Beyond this critical temperature, thylakoid ultrastructure became severely perturbed. Biophysical analyses revealed that electrochemical leakage through the thylakoid membranes was extremely sensitive to elevated temperature (Q10 of 3.5). Data suggest that the loss of the proton motive force (pmf) occurred even when heat-labile photosystem II (PSII) was functioning, and saturation of thylakoid-associated fatty acids was active. Indeed, growth was inhibited when leakage of pmf through thylakoid membranes was insufficiently compensated by proton input from PSII. Our findings provide a mechanistic understanding of the importance of rapid saturation of thylakoid-associated fatty acids for ultrastructure maintenance and a generation of pmf at elevated temperatures. To the extent these experimental results apply, the ability of diatoms to generate a pmf may be a sensitive parameter for thermal sensitivity diagnosis in phytoplankton.
Collapse
Affiliation(s)
- Kuan Yu Cheong
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Emre Firlar
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers New Jersey Cryo-Electron Microscopy & Tomography Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Lia Ficaro
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers New Jersey Cryo-Electron Microscopy & Tomography Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maxim Y Gorbunov
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers New Jersey Cryo-Electron Microscopy & Tomography Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
3
|
Paluch-Lubawa E, Stolarska E, Sobieszczuk-Nowicka E. Dark-Induced Barley Leaf Senescence - A Crop System for Studying Senescence and Autophagy Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:635619. [PMID: 33790925 PMCID: PMC8005711 DOI: 10.3389/fpls.2021.635619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 06/02/2023]
Abstract
This review synthesizes knowledge on dark-induced barley, attached, leaf senescence (DILS) as a model and discusses the possibility of using this crop system for studying senescence and autophagy mechanisms. It addresses the recent progress made in our understanding of DILS. The following aspects are discussed: the importance of chloroplasts as early targets of DILS, the role of Rubisco as the largest repository of recoverable nitrogen in leaves senescing in darkness, morphological changes of these leaves other than those described for chloroplasts and metabolic modifications associated with them, DILS versus developmental leaf senescence transcriptomic differences, and finally the observation that in DILS autophagy participates in the circulation of cell components and acts as a quality control mechanism during senescence. Despite the progression of macroautophagy, the symptoms of degradation can be reversed. In the review, the question also arises how plant cells regulate stress-induced senescence via autophagy and how the function of autophagy switches between cell survival and cell death.
Collapse
|
4
|
Nami F, Tian L, Huber M, Croce R, Pandit A. Lipid and protein dynamics of stacked and cation-depletion induced unstacked thylakoid membranes. BBA ADVANCES 2021; 1:100015. [PMID: 37082020 PMCID: PMC10074959 DOI: 10.1016/j.bbadva.2021.100015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chloroplast thylakoid membranes in plants and green algae form 3D architectures of stacked granal membranes interconnected by unstacked stroma lamellae. They undergo dynamic structural changes as a response to changing light conditions that involve grana unstacking and lateral supramolecular reorganization of the integral membrane protein complexes. We assessed the dynamics of thylakoid membrane components and addressed how they are affected by thylakoid unstacking, which has consequences for protein mobility and the diffusion of small electron carriers. By a combined nuclear and electron paramagnetic-resonance approach the dynamics of thylakoid lipids was assessed in stacked and cation-depletion induced unstacked thylakoids of Chlamydomonas (C.) reinhardtii. We could distinguish between structural, bulk and annular lipids and determine membrane fluidity at two membrane depths: close to the lipid headgroups and in the lipid bilayer center. Thylakoid unstacking significantly increased the dynamics of bulk and annular lipids in both areas and increased the dynamics of protein helices. The unstacking process was associated with membrane reorganization and loss of long-range ordered Photosystem II- Light-Harvesting Complex II (PSII-LHCII) complexes. The fluorescence lifetime characteristics associated with membrane unstacking are similar to those associated with state transitions in intact C. reinhardtii cells. Our findings could be relevant for understanding the structural and functional implications of thylakoid unstacking that is suggested to take place during several light-induced processes, such as state transitions, photoacclimation, photoinhibition and PSII repair.
Collapse
Affiliation(s)
- Faezeh Nami
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Lijin Tian
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Anjali Pandit
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
- Corresponding author:
| |
Collapse
|
5
|
Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures. Biomolecules 2020; 11:biom11010027. [PMID: 33383794 PMCID: PMC7823496 DOI: 10.3390/biom11010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.
Collapse
|
6
|
Bojko M, Olchawa-Pajor M, Goss R, Schaller-Laudel S, Strzałka K, Latowski D. Diadinoxanthin de-epoxidation as important factor in the short-term stabilization of diatom photosynthetic membranes exposed to different temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:1270-1286. [PMID: 30362127 DOI: 10.1111/pce.13469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/17/2018] [Indexed: 05/25/2023]
Abstract
The importance of diadinoxanthin (Ddx) de-epoxidation in the short-term modulation of the temperature effect on photosynthetic membranes of the diatom Phaeodactylum tricornutum was demonstrated by electron paramagnetic resonance (EPR), Laurdan fluorescence spectroscopy, and high-performance liquid chromatography. The 5-SASL spin probe employed for the EPR measurements and Laurdan provided information about the membrane area close to the polar head groups of the membrane lipids, whereas with the 16-SASL spin probe, the hydrophobic core, where the fatty acid residues are located, was probed. The obtained results indicate that Ddx de-epoxidation induces a two component mechanism in the short-term regulation of the membrane fluidity of diatom thylakoids during changing temperatures. One component has been termed the "dynamic effect" and the second the "stable effect" of Ddx de-epoxidation. The "dynamic effect" includes changes of the membrane during the time course of de-epoxidation whereas the "stable effect" is based on the rigidifying properties of Dtx. The combination of both effects results in a temporary increase of the rigidity of both peripheral and internal parts of the membrane whereas the persistent increase of the rigidity of the hydrophobic core of the membrane is solely based on the "stable effect."
Collapse
Affiliation(s)
- Monika Bojko
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Olchawa-Pajor
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | | | - Kazimierz Strzałka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Oxygenic photosynthesis: EPR study of photosynthetic electron transport and oxygen-exchange, an overview. Cell Biochem Biophys 2018; 77:47-59. [PMID: 30460441 DOI: 10.1007/s12013-018-0861-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022]
Abstract
In this review, we consider the applications of electron paramagnetic resonance (EPR) methods to the study of the relationships between the electron transport and oxygen-exchange processes in photosynthetic systems of oxygenic type. One of the purposes of this article is to encourage scientists to use the advantageous EPR oximetry approaches to study oxygen-related electron transport processes in photosynthetic systems. The structural organization of the photosynthetic electron transfer chain and the EPR approaches to the measurements of molecular oxygen (O2) with O2-sensitive species (nitroxide spin labels and solid paramagnetic particles) are briefly reviewed. In solution, the collision of O2 with spin probes causes the broadening of their EPR spectra and the reduction of their spin-lattice relaxation times. Based on these effects, tools for measuring O2 concentration and O2 diffusion in biological systems have been developed. These methods, named "spin-label oximetry," include not only nitroxide spin labels, but also other stable-free radicals with narrow EPR lines, as well as particulate probes with EPR spectra sensitive to molecular oxygen (lithium phthalocyanine, coals, and India ink). Applications of EPR approaches for measuring O2 evolution and consumption are illustrated using examples of photosynthetic systems of oxygenic type, chloroplasts in situ (green leaves), and cyanobacteria.
Collapse
|
8
|
Jajić I, Sarna T, Szewczyk G, Strzałka K. Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. JOURNAL OF PLANT PHYSIOLOGY 2015; 184:49-56. [PMID: 26241758 DOI: 10.1016/j.jplph.2015.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 05/12/2023]
Abstract
This paper presents a detailed analysis of thylakoids isolated from secondary barley leaves harvested 18, 22, 25, 29, 32, 35 and 39 days after sowing (DAS). Goal of the analysis was to investigate the production of different reactive oxygen species (ROS) during development and senescence of barley. Generation of superoxide anion (O2-•) and hydrogen peroxide (H2O2) increases during development of barley reaching the highest value right after the onset of senescence (between 25 and 29 DAS), thereafter the levels of both ROS start to decrease until 35 DAS when production of H2O2 increases again. In comparison with O2-• and H2O2, generation of singlet oxygen ((1)O2) showed continuous production of low amounts thought the duration of experiment. Oxidative damage to the thylakoid membrane was assessed by measuring lipid peroxidation. Results showed gradual increase in lipid peroxidation with progress of plant development with highest increase occurring at the late stages of senescence. A possible factor contributing to the elevation in the production of ROS could be an increase in membrane fluidity observed in our previous study. Fluidization of the membrane, allows for better penetration of oxygen inside the membrane, which can lead to an increase in the production of ROS. Indeed, the production of ROS started to increase together with observed fluidization of the membrane from 22 to 29 DAS. Thereafter, production of ROS started to decline till 35th DAS. On the last day of the measurement, chl is at 25% of its initial value, lipid peroxidation reaches the highest value and H2O2 increases again.
Collapse
Affiliation(s)
- Ivan Jajić
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kazimierz Strzałka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Ul. Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
9
|
Jajic I, Sarna T, Strzalka K. Senescence, Stress, and Reactive Oxygen Species. PLANTS (BASEL, SWITZERLAND) 2015; 4:393-411. [PMID: 27135335 PMCID: PMC4844410 DOI: 10.3390/plants4030393] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/08/2023]
Abstract
Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H₂O₂ causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H₂O₂ such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (¹O₂) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment.
Collapse
Affiliation(s)
- Ivan Jajic
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| |
Collapse
|
10
|
Chen T, Li HM, Zou DL, Du YZ, Shen YH, Li Y. Preparation of two flavonoid glycosides with unique structures from barley seedlings by membrane separation technology and preparative high-performance liquid chromatography. J Sep Sci 2014; 37:3760-6. [DOI: 10.1002/jssc.201400798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Chen
- Key Laboratory of Tibetan medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
| | - Hong-mei Li
- Key Laboratory of Tibetan medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
- University of the Chinese Academy of Sciences; Beijing P.R. China
| | - Deng-Lang Zou
- Key Laboratory of Tibetan medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
- University of the Chinese Academy of Sciences; Beijing P.R. China
| | - Yu-Zhi Du
- Key Laboratory of Tibetan medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
| | - Yu-Hu Shen
- Key Laboratory of Tibetan medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
| | - Yulin Li
- Key Laboratory of Tibetan medicine Research; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
| |
Collapse
|