1
|
Han X, Gai Z, Sun J, Zhai J, Qiu C, Wu Z, Li Z. Multi Characteristic Analysis of Vascular Cambium Cells in Populus euphratica Reveals Its Anti-Aging Strategy. PLANTS (BASEL, SWITZERLAND) 2024; 13:3549. [PMID: 39771247 PMCID: PMC11677677 DOI: 10.3390/plants13243549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
All multicellular organisms undergo senescence, but the continuous division of the vascular cambium in plants enables certain tree species to survive for hundreds or even thousands of years. Previous studies have focused on the development of the vascular cambium, but the mechanisms regulating age-related changes remain poorly understood. This study investigated age-related changes in the vascular cambium of P. euphratica trees aged 50 to 350 years. The number of cambium cells in the 50-year-old tree group was 10 ± 2, while the number of cambium cells in the 200-year-old and 350-year-old tree groups significantly decreased. The thickness of the cambium cells exhibited a similar trend. In addition, the net photosynthetic and transpiration rates continue to increase with age, but no notable differences were found in factors like average leaf area, palisade tissue thickness, and stomatal density. A total of 6491 differentially expressed genes (DEGs) were identified in the vascular cambium of P. euphratica at three distinct ages using RNA sequencing. The expression patterns of DEGs associated with cell division and differentiation, lignin biosynthesis, plant hormones, and transcription factors were analyzed. DEGs related to XTH, EXP, PAL, C4H, ABA, Br, GA, and others are highly expressed in older trees, whilst those encoding expansins, kinases, cyclins, 4CL, Auxin, Eth, SA, and others are more prevalent in younger trees. Gene family members, such as NAC, MYB, HD-ZIP III, WRKY, and GRF, have various regulatory functions in the vascular cambium. The findings offer insights into how ancient P. euphratica trees maintain vitality by balancing growth and aging, providing a foundation for future research on their longevity mechanisms.
Collapse
Affiliation(s)
- Xiaoli Han
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Zhongshuai Gai
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Jianhao Sun
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Juntuan Zhai
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Chen Qiu
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhijun Li
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China; (X.H.)
| |
Collapse
|
2
|
Du K, Xu Y, Wang N, Qin L, Tao J. Transcriptomic Remodeling Occurs During Cambium Activation and Xylem Cell Development in Taxodium ascendens. Curr Issues Mol Biol 2024; 46:11927-11941. [PMID: 39590302 PMCID: PMC11592639 DOI: 10.3390/cimb46110708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Taxodium ascendens has been extensively cultivated in the wetlands of the Yangtze River in south China and has significantly contributed to ecology and timber production. Until now, research on T. ascendens genomics has yet to be conducted due to its large and complex genome, which hinders the development of T. ascendens genomic resources. Combined with the microstructural changes during cambium cell differentiation across various growth periods, we investigate the transcriptome expression and regulatory mechanisms governing cambium activity in T. ascendens. Using RNA sequencing (RNA-Seq) technology, we identified the genes involved in the cambium development of cells at three stages (dormancy, reactivation, and activity). These genes encode the regulatory and control factors associated with the cambial activity, cell division, cell expansion, and biosynthesis of cell wall components. Blast comparison revealed that three genes (TR_DN69961_c0_g1, TRINITY_DN17100_c1_g1, TRINITY_DN111727_c0_g1) from the MYB and NAC families might regulate transcription during lignin formation in wood thickening. These results illustrate the dynamic changes in the transcriptional network during vascular cambium development. Additionally, they shed light on the genetic regulation mechanism of secondary growth in T. ascendens and guide further elucidation of the candidate genes involved in regulating cambium differentiation and wood formation.
Collapse
Affiliation(s)
| | - Youming Xu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (K.D.); (N.W.); (L.Q.); (J.T.)
| | | | | | | |
Collapse
|
3
|
Li X, Cheng D, Qi L, Zhan J, Li W. Regulation of age-dependent expression patterns of five transcription factors in Larix kaempferi. FORESTRY RESEARCH 2023; 3:18. [PMID: 39526262 PMCID: PMC11524251 DOI: 10.48130/fr-2023-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 11/16/2024]
Abstract
To reveal the regulatory mechanisms underlying age-dependent expression patterns, we characterized seven age-related genes, LaDAL1, LaAGL2-2, LaAGL2-3, LaAGL11, LaSOC1-1, LaAP2-1, and LaAP2-2 in terms of transcription and intron splicing in Larix kaempferi. Based on the exon-intron structures, we quantified the pre-mRNA levels and mature mRNA levels of these seven genes using quantitative reverse transcription polymerase chain reaction experiments. We found that the pre-mRNA levels manifested age-related patterns, indicating that their transcription was primarily regulated by age. By comparing the increasing or decreasing rates of the pre-mRNA and spliced mRNA levels, we found that their splicing efficiencies also changed with age. These results clearly show that both pre-mRNA transcription and splicing of five age-related genes are regulated by age, indicating that age-dependent expression patterns are controlled at both transcriptional and post-transcriptional levels, and unveiling the underlying regulatory molecular mechanisms should focus on the transcription factors, epigenetic regulation, and RNA splicing. These data provide new insights into the age-mediated regulation of gene expression in woody perennials in terms of longevity.
Collapse
Affiliation(s)
- Xiangyi Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
| | - Dongxia Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
| | - Liwang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
| | - Jinwei Zhan
- State-owned Dagujia Forestry Farm in Qingyuan Man Autonomous County, Liaoning 113305, People’s Republic of China
| | - Wanfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
| |
Collapse
|
4
|
Huang L, Zeng Y, Yang S, Zhou H, Xu J, Zhou Y, Wang G. Transcriptome analysis of gene expression profiles reveals wood formation mechanisms in Chinese fir at different stand ages. Heliyon 2023; 9:e14861. [PMID: 37025845 PMCID: PMC10070095 DOI: 10.1016/j.heliyon.2023.e14861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Forests are crucial sustainable sources of natural ecosystems and contribute to human welfare. Cunninghamia lanceolata (Chinese fir) is an economically important conifer and occupies the largest area in China that produces global wood resources. Although Chinese fir has high economic value in China, little information is known regarding its mechanisms of wood formation. Therefore, transcriptome analysis was conducted to study the gene expression patterns and associated timber formation mechanisms in Chinese fir at different stand ages. In the present study, a total of 837,156 unigenes were identified in 84 samples from Chinese fir (pith and root) at different stand ages via RNA-Seq. Among them, most of the differentially expressed genes (DEGs) were significantly enrichment in plant hormone signal transduction, flavonoid metabolism pathway, starch and sucrose metabolism, and MAPK signal transduction pathway, which might be associated with the diameter formation in Chinese fir. The DEGs in these pathways were analyzed in Chinese fir and were related to lignin synthesis, cell wall formation and cell wall reinforcement/thickening. These genes might play an important role in regulating timber formation/growth in Chinese fir. In addition, certain transcriptome factors (TFs) related to Chinese fir timber formation were identified, including WRKY33, WRKY22, PYR/PYL, and MYC2. Weighted co-expression network analysis (WGCNA) showed that glucan endo-1,3-beta-d-glucosidase was a hub gene significantly correlated with the growth-related genes in Chinese fir. Sixteen key genes that related to diameter regulation in Chinese fir were verified by qRT-PCR analysis. These key genes might have a fine regulatory role in timber formation in Chinese fir. Our results pave the way for research on the regulatory mechanisms of wood formation, and provide an insight for improving the quality production of Chinese fir.
Collapse
Affiliation(s)
- Lei Huang
- Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Yajun Zeng
- Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Shikai Yang
- Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Hua Zhou
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Jiajuan Xu
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Yunchao Zhou
- Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
- Corresponding author. Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China.
| | - Gang Wang
- Guizhou Academy of Forestry, Guiyang, 550005, China
- Corresponding author. Guizhou Academy of Forestry, Guiyang, 550005, China.
| |
Collapse
|
5
|
Wei S, Yang G, Yang Y, Yin T. Time-sequential detection of quantitative trait loci and candidate genes underlying the dynamic growth of Salix suchowensis. TREE PHYSIOLOGY 2022; 42:877-890. [PMID: 34761273 DOI: 10.1093/treephys/tpab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Elucidating the genetic factors underlying long-term biological processes remains challenging since the relevant genes and their effects may vary across different developmental stages. In this study, we carried out a large-scale field trial of the progeny of an F1 full-sib pedigree of Salix suchowensis and measured plant height and ground diameter periodically over a time course of 240 days. With the obtained data, we characterized plant growth rhythms and performed time-sequential analyses of quantitative trait loci underlying the dynamic growth of the plants. The dynamic mapping of quantitative trait loci revealed that stem height and ground diameter were under the control of four quantitative trait loci, and the effects of these quantitative trait loci varied greatly throughout the growth process, in which two quantitative trait loci were found to exert a pleiotropic effect determining the correlation between stem height and ground diameter. The analysis of candidate genes in the target genetic intervals showed that the pleiotropic effect of the two quantitative trait loci arises from the colocalization of genes with independent effects on stem height and ground diameter. Further examination of the expression patterns of the candidate genes indicated that height and circumference growth involve different activities of leaf and cambium tissues. This study provides unprecedented information to help us understand the dynamic growth of plants and presents an applicable strategy for elucidating the genetic mechanism underlying a long-term biological process by using plant growth as an example.
Collapse
Affiliation(s)
- Suyun Wei
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
| | - Guo Yang
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
- School of Life Science, Shaoxing University, 508# Huancheng West Road, Shaoxing 312000, Zhejiang, China
| | - Yonghua Yang
- College of Life Sciences, Nanjing University, 163# Xianlin Road, Nanjing 210093, China
| | - Tongming Yin
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
| |
Collapse
|
6
|
Xu H, Chen B, Zhao Y, Guo Y, Liu G, Li R, Zeisler-Diehl VV, Chen Y, He X, Schreiber L, Lin J. Non-Coding RNA Analyses of Seasonal Cambium Activity in Populus tomentosa. Cells 2022; 11:640. [PMID: 35203291 PMCID: PMC8869787 DOI: 10.3390/cells11040640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNA, known as long non-coding RNA (lncRNA), circular RNA (circRNA) and microRNA (miRNA), are taking part in the multiple developmental processes in plants. However, the roles of which played during the cambium activity periodicity of woody plants remain poorly understood. Here, lncRNA/circRNA-miRNA-mRNA regulatory networks of the cambium activity periodicity in Populus tomentosa was constructed, combined with morphologic observation and transcriptome profiling. Light microscopy and Periodic Acid Schiff (PAS) staining revealed that cell walls were much thicker and number of cell layers was increased during the active-dormant stage, accompanied by abundant change of polysaccharides. The novel lncRNAs and circRNAs were investigated, and we found that 2037 lncRNAs and 299 circRNAs were differentially expression during the vascular cambium period, respectively. Moreover, 1046 genes were identified as a target gene of 2037 novel lncRNAs, and 89 of which were the miRNA precursors or targets. By aligning miRNA precursors to the 7655 lncRNAs, 21 lncRNAs were identified as precursors tof 19 known miRNAs. Furthermore, the target mRNA of lncRNA/circRNA-miRNA network mainly participated in phytohormone, cell wall alteration and chlorophyll metabolism were analyzed by GO enrichment and KEGG pathway. Especially, circRNA33 and circRNA190 taking part in the phytohormone signal pathway were down-regulated during the active-dormant transition. Xyloglucan endotransglucosylase/hydrolase protein 24-like and UDP-glycosyltransferase 85A1 involved in the cell wall modification were the targets of lncRNA MSTRG.11198.1 and MSTRG.1050.1. Notably, circRNA103 and MSTRG.10851.1 regulate the cambium periodicity may interact with the miR482. These results give a new light into activity-dormancy regulation, associated with transcriptional dynamics and non-coding RNA networks of potential targets identification.
Collapse
Affiliation(s)
- Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (H.X.); (Y.C.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
- College of Life Sciences, Peking University, Beijing 100871, China;
| | - Bo Chen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yayu Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Guijun Liu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China;
| | - Ruili Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
| | - Viktoria V. Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.V.Z.-D.); (L.S.)
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (H.X.); (Y.C.)
| | - Xinqiang He
- College of Life Sciences, Peking University, Beijing 100871, China;
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; (V.V.Z.-D.); (L.S.)
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (B.C.); (Y.Z.); (Y.G.); (R.L.)
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Wang Q, Dai X, Pang H, Cheng Y, Huang X, Li H, Yan X, Lu F, Wei H, Sederoff RR, Li Q. BEL1-like Homeodomain Protein BLH6a Is a Negative Regulator of CAl5H2 in Sinapyl Alcohol Monolignol Biosynthesis in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:695223. [PMID: 34249068 PMCID: PMC8269948 DOI: 10.3389/fpls.2021.695223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood of most flowering plants (dicotyledonous angiosperms) is typically polymerized from three monolignol precursors, coniferyl alcohol, sinapyl alcohol, and p-coumaroyl alcohol, resulting in guaiacyl (G), syringyl (S), and hydroxyphenyl (H) subunits, respectively. In this study, we focus on the transcriptional regulation of a coniferaldehyde 5-hydroxylase (CAld5H2) gene, which encodes a key enzyme for sinapyl alcohol biosynthesis. We carried out a yeast one-hybrid (Y1H) screen to identify candidate upstream transcription factors (TFs) regulating CAld5H2. We obtained 12 upstream TFs as potential regulators of CAld5H2. One of these TF genes, BLH6a, encodes a BEL1-like homeodomain (BLH) protein and negatively regulated the CAld5H2 promoter activity. The direct regulation of CAld5H2 promoter by BLH6a was supported by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and dominant repression of BLH6a in transgenic plants. Luciferase complementation imaging analyses showed extensive protein-protein interactions among these 12 TFs. We propose that BLH6a is a negative regulator of CAld5H2, which acts through combinatorial regulation of multiple TFs for sinapyl alcohol (S monolignol) biosynthesis in poplar.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yanxia Cheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Fachuang Lu
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
8
|
Ma Z, Lin S. Transcriptomic Revelation of Phenolic Compounds Involved in Aluminum Toxicity Responses in Roots of Cunninghamia lanceolata (Lamb.) Hook. Genes (Basel) 2019; 10:genes10110835. [PMID: 31652726 PMCID: PMC6896160 DOI: 10.3390/genes10110835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 11/17/2022] Open
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is one of the most important coniferous evergreen tree species in South China due to its desirable attributes of fast growth and production of strong and hardy wood. However, the yield of Chinese fir is often inhibited by aluminum (Al) toxicity in acidic soils of South China. Understanding the molecular mechanisms of Chinese fir root responses to Al toxicity might help to further increase its productivity. Here we used the Illumina Hiseq4000 platform to carry out transcriptome analysis of Chinese fir roots subjected to Al toxicity conditions. A total of 88.88 Gb of clean data was generated from 12 samples and assembled into 105,732 distinct unigenes. The average length and N50 length of these unigenes were 839 bp and 1411 bp, respectively. Among them, 58362 unigenes were annotated through searches of five public databases (Nr: NCBI non-redundant protein sequences, Swiss-Prot: A manually annotated and reviewed protein sequence database, GO: Gene Ontology, KOG/COG: Clusters of Orthologous Groups of proteins, and KEGG: the Kyoto Encyclopedia of Genes and Genomes database), which led to association of unigenes with 44 GO terms. Plus, 1615 transcription factors (TFs) were functionally classified. Then, differentially expressed genes (DEGs, |log2(fold change)| ≥ 1 and FDR ≤ 0.05) were identified in comparisons labelled TC1 (CK-72 h/CK-1 h) and TC2 (Al-72 h/Al-1 h). A large number of TC2 DEGs group were identified, with most being down-regulated under Al stress, while TC1 DEGs were primarily up-regulated. Combining GO, KEGG, and MapMan pathway analysis indicated that many DEGs are involved in primary metabolism, including cell wall metabolism and lipid metabolism, while other DEGs are associated with signaling pathways and secondary metabolism, including flavonoids and phenylpropanoids metabolism. Furthermore, TFs identified in TC1 and TC2 DEGs represented 21 and 40 transcription factor families, respectively. Among them, expression of bHLH, C2H2, ERF, bZIP, GRAS, and MYB TFs changed considerably under Al stress, which suggests that these TFs might play crucial roles in Chinese fir root responses to Al toxicity. These differentially expressed TFs might act in concert with flavonoid and phenylpropanoid pathway genes in fulfilling of key roles in Chinese fir roots responding to Al toxicity.
Collapse
Affiliation(s)
- Zhihui Ma
- Institute for Forest Resources and Environment of Guizhou,Guizhou University,Guiyang 550025, China.
| | - Sizu Lin
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou 350002, China.
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Ma Q, Bu D, Zhang J, Wu Y, Pei D. The Transcriptome Landscape of Walnut Interspecies Hybrid ( Juglans hindsii × Juglans regia) and Regulation of Cambial Activity in Relation to Grafting. Front Genet 2019; 10:577. [PMID: 31293615 PMCID: PMC6598599 DOI: 10.3389/fgene.2019.00577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Walnuts (Juglans, Juglandaceae) are known throughout the world as economically important trees that provide fat, protein, vitamins, and minerals as a food source, and produce high-quality timber. We have amended the purpose section to say "However," the omics resources are limited, which hampered the elucidation of molecular mechanisms resulting in their economically important traits (such as yield, fertility alternation, oil synthesis, and wood formation). To enrich the omics database of walnut, there is great need for analyses of its genomic and transcriptomic characteristics. In this study, we reported for the first time of the transcriptome landscape of six important organs or tissues in walnut interspecies hybrid using next-generation sequencing technology. Over 338 million clean reads were obtained. This yielded 74,072 unigenes with an average length of 782.71 bp. To develop an understanding of gene functions and regulatory pathways, 66,355 of the unigenes were identified as homologs of annotated genes and classified into three general categories with 61 functional subcategories. 2,288 out of 2,549 unmapped unigenes had at least one BLAST hit against the public databases. A total of 1,237 transcription factor-encoding genes (TFs) and 2,297 tissue-specific unigenes were identified. Interestingly, in the new shoot between an adult seedling and a grafted tree, the expression of 9,494 unigenes were significantly different, among which 4,388 were up-regulated and 5,106 were down-regulated. Of these, 195, 177, 232, 75, 114, and 68 unigenes were related to transcription factors, cell wall, defense response, transport, plant hormone biosynthesis, and other cambial activity-related functions, respectively. The obtained sequences and putative functional data constitute a resource for future functional analyses in walnut and other woody plants. These findings will be useful in further studies addressing the molecular mechanisms underlying grafting-related cambial activity.
Collapse
Affiliation(s)
- Qingguo Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dechao Bu
- Key Laboratory of Intelligent Information Processing, Advanced Computing Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Junpei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yang Wu
- Key Laboratory of Intelligent Information Processing, Advanced Computing Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|