1
|
Li L, Ma P, Nirasawa S, Liu H. Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Crit Rev Food Sci Nutr 2023; 64:7118-7148. [PMID: 36847125 DOI: 10.1080/10408398.2023.2181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.
Collapse
Affiliation(s)
- Lizhen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Satoru Nirasawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki Japan
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Zhou C, Hu J, Xu Z, Yue J, Ye H, Yang G. A Monitoring System for the Segmentation and Grading of Broccoli Head Based on Deep Learning and Neural Networks. FRONTIERS IN PLANT SCIENCE 2020; 11:402. [PMID: 32351523 PMCID: PMC7174615 DOI: 10.3389/fpls.2020.00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Achieving the non-contact and non-destructive observation of broccoli head is the key step to realize the acquisition of high-throughput phenotyping information of broccoli. However, the rapid segmentation and grading of broccoli head remains difficult in many parts of the world due to low equipment development level. In this paper, we combined an advanced computer vision technique with a deep learning architecture to allow the acquisition of real-time and accurate information about broccoli head. By constructing a private image dataset with 100s of broccoli-head images (acquired using a self-developed imaging system) under controlled conditions, a deep convolutional neural network named "Improved ResNet" was trained to extract the broccoli pixels from the background. Then, a yield estimation model was built based on the number of extracted pixels and the corresponding pixel weight value. Additionally, the Particle Swarm Optimization Algorithm (PSOA) and the Otsu method were applied to grade the quality of each broccoli head according to our new standard. The trained model achieved an Accuracy of 0.896 on the test set for broccoli head segmentation, demonstrating the feasibility of this approach. When testing the model on a set of images with different light intensities or with some noise, the model still achieved satisfactory results. Overall, our approach of training a deep learning model using low-cost imaging devices represents a means to improve broccoli breeding and vegetable trade.
Collapse
Affiliation(s)
- Chengquan Zhou
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Hu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhifu Xu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jibo Yue
- International Institute for Earth System Science, Nanjing University, Nanjing, China
| | - Hongbao Ye
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guijun Yang
- Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. China, Beijing Research Center for Information Technology in Agriculture, Beijing, China
- National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| |
Collapse
|
4
|
Qi J, Zhao X, Li Z. iTRAQ-Based Quantitative Proteomic Analysis of the Arabidopsis Mutant opr3-1 in Response to Exogenous MeJA. Int J Mol Sci 2020; 21:ijms21020571. [PMID: 31963133 PMCID: PMC7013738 DOI: 10.3390/ijms21020571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Jasmonates (JAs) regulate the defense of biotic and abiotic stresses, growth, development, and many other important biological processes in plants. The comprehensive proteomic profiling of plants under JAs treatment provides insights into the regulation mechanism of JAs. Isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis was performed on the Arabidopsis wild type (Ws) and JA synthesis deficiency mutant opr3-1. The effects of exogenous MeJA treatment on the proteome of opr3-1, which lacks endogenous JAs, were investigated. A total of 3683 proteins were identified and 126 proteins were differentially regulated between different genotypes and treatment groups. The functional classification of these differentially regulated proteins showed that they were involved in metabolic processes, responses to abiotic stress or biotic stress, the defense against pathogens and wounds, photosynthesis, protein synthesis, and developmental processes. Exogenous MeJA treatment induced the up-regulation of a large number of defense-related proteins and photosynthesis-related proteins, it also induced the down-regulation of many ribosomal proteins in opr3-1. These results were further verified by a quantitative real-time PCR (qRT-PCR) analysis of 15 selected genes. Our research provides the basis for further understanding the molecular mechanism of JAs’ regulation of plant defense, photosynthesis, protein synthesis, and development.
Collapse
|
5
|
Yang B, Chen M, Wang T, Chen X, Li Y, Wang X, Zhu W, Xia L, Hu X, Tian J. A metabolomic strategy revealed the role of JA and SA balance in Clematis terniflora DC. Response to UVB radiation and dark. PHYSIOLOGIA PLANTARUM 2019; 167:232-249. [PMID: 30467852 DOI: 10.1111/ppl.12883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Clematis terniflora DC. is a valuable resource with potential high pharmaceutical value. Proteomic, transcriptomic and metabolomic analyses of C. terniflora that has been exposed to high levels of UVB irradiation and dark conditions (HUVB + D) have revealed the mechanisms underlying its medicinal potential. However, the signal transduction pathways and the mechanisms of regulation for the accumulation of secondary metabolites remain unclear. In this study, we show that the jasmonic acid (JA) and salicylic acid (SA) signals were activated in C. terniflora in response to HUVB + D. Metabolomic analysis demonstrated that the perturbation in JA and SA balance led to additional reallocation of carbon and nitrogen resources. Evaluating the fold change ratios of differentially changed metabolites proved that JA signal enhanced the transformation of nitrogen to carbon through the 4-aminobutyric acid (GABA) shunt pathway, which increased the carbon reserve to be utilized in the production of secondary metabolites. However, SA signal induced the synthesis of proline, while avoiding the accumulation of secondary metabolites. Over all, the results indicate that the co-increase of JA and SA reconstructed the dynamic stability of transformation from nitrogen to carbon, which effectively enhanced the oxidative defense to HUVB + D in C. terniflora by increasing the secondary metabolites.
Collapse
Affiliation(s)
- Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Meng Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Li'an Xia
- Benxi Hi-tech Industrial Development Zone, Benxi, China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- Education Ministry Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Kwa FA, Dulull NK, Roessner U, Dias DA, Rupasinghe TW. Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration. F1000Res 2019; 8:1067. [PMID: 33145006 PMCID: PMC7590896 DOI: 10.12688/f1000research.19598.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 03/31/2024] Open
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients' quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection. Methods: The in vitro oxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry. Results: Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids. Conclusions: We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
Collapse
Affiliation(s)
- Faith A. Kwa
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
- Department of Health Sciences and Biostatistic, School of Health and Biomedical Sciences, Swinburne University of Technology, Victoria 3122, Australia
| | - Nabeela K. Dulull
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Daniel A. Dias
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
7
|
Kwa FA, Dulull NK, Roessner U, Dias DA, Rupasinghe TW. Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration. F1000Res 2019; 8:1067. [PMID: 33145006 PMCID: PMC7590896 DOI: 10.12688/f1000research.19598.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients' quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection. Methods: The in vitro oxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry. Results: Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids. Conclusions: We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
Collapse
Affiliation(s)
- Faith A. Kwa
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
- Department of Health Sciences and Biostatistic, School of Health and Biomedical Sciences, Swinburne University of Technology, Victoria 3122, Australia
| | - Nabeela K. Dulull
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Daniel A. Dias
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Kwa FA, Dulull NK, Roessner U, Dias DA, Rupasinghe TW. Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration. F1000Res 2019; 8:1067. [PMID: 33145006 PMCID: PMC7590896 DOI: 10.12688/f1000research.19598.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 03/31/2024] Open
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients' quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection. Methods: The in vitro oxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry. Results: Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids. Conclusions: We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
Collapse
Affiliation(s)
- Faith A. Kwa
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
- Department of Health Sciences and Biostatistic, School of Health and Biomedical Sciences, Swinburne University of Technology, Victoria 3122, Australia
| | - Nabeela K. Dulull
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Daniel A. Dias
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
9
|
Kwa FA, Dulull NK, Roessner U, Dias DA, Rupasinghe TW. Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration. F1000Res 2019; 8:1067. [PMID: 33145006 PMCID: PMC7590896 DOI: 10.12688/f1000research.19598.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 03/31/2024] Open
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients' quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection. Methods: The in vitro oxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry. Results: Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids. Conclusions: We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
Collapse
Affiliation(s)
- Faith A. Kwa
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
- Department of Health Sciences and Biostatistic, School of Health and Biomedical Sciences, Swinburne University of Technology, Victoria 3122, Australia
| | - Nabeela K. Dulull
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Daniel A. Dias
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
10
|
Kwa FA, Dulull NK, Roessner U, Dias DA, Rupasinghe TW. Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration. F1000Res 2019; 8:1067. [PMID: 33145006 PMCID: PMC7590896 DOI: 10.12688/f1000research.19598.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 03/31/2024] Open
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients' quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection. Methods: The in vitro oxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry. Results: Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids. Conclusions: We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
Collapse
Affiliation(s)
- Faith A. Kwa
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
- Department of Health Sciences and Biostatistic, School of Health and Biomedical Sciences, Swinburne University of Technology, Victoria 3122, Australia
| | - Nabeela K. Dulull
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Daniel A. Dias
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
11
|
Wang M, Zhang Y, Leng C, Li X, Wang P, Gu Z, Yang R. Glucosinolates metabolism and redox state of rocket (
Eruca sativa
Mill.) during germination. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mian Wang
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Yuxuan Zhang
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Chaoqun Leng
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Xinyue Li
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Pei Wang
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology Nanjing Agricultural University Nanjing People's Republic of China
| |
Collapse
|
12
|
González-Bosch C. Priming plant resistance by activation of redox-sensitive genes. Free Radic Biol Med 2018; 122:171-180. [PMID: 29277443 DOI: 10.1016/j.freeradbiomed.2017.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Priming by natural compounds is an interesting alternative for sustainable agriculture, which also contributes to explore the molecular mechanisms associated with stress tolerance. Although hosts and stress types eventually determine the mode of action of plant-priming agents, it highlights that many of them act on redox signalling. These include vitamins thiamine, riboflavin and quercetin; organic acids like pipecolic, azelaic and hexanoic; volatile organic compounds such as methyl jasmonate; cell wall components like chitosans and oligogalacturonides; H2O2, etc. This review provides data on how priming inducers promote stronger and faster responses to stress by modulating the oxidative environment, and interacting with signalling pathways mediated by salycilic acid, jasmonic acid and ethylene. The histone modifications involved in priming that affect the transcription of defence-related genes are also discussed. Despite the evolutionary distance between plants and animals, and the fact that the plant innate immunity takes place in each plant cell, they show many similarities in the molecular mechanisms that underlie pathogen perception and further signalling to activate defence responses. This review highlights the similarities between priming through redox signalling in plants and in mammalian cells. The strategies used by pathogens to manipulate the host´s recognition and the further activation of defences also show similarities in both kingdoms. Moreover, phytochemicals like sulforaphane and 12-oxo-phytodienoic acid prime both plant and mammalian responses by activating redox-sensitive genes. Hence research data into the priming of plant defences can provide additional information and a new viewpoint for priming mammalian defence, and vice versa.
Collapse
Affiliation(s)
- Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|