1
|
Fichtl L, Hofmann M, Kahlen K, Voss-Fels KP, Cast CS, Ollat N, Vivin P, Loose S, Nsibi M, Schmid J, Strack T, Schultz HR, Smith J, Friedel M. Towards grapevine root architectural models to adapt viticulture to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1162506. [PMID: 36998680 PMCID: PMC10043487 DOI: 10.3389/fpls.2023.1162506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 05/31/2023]
Abstract
To sustainably adapt viticultural production to drought, the planting of rootstock genotypes adapted to a changing climate is a promising means. Rootstocks contribute to the regulation of scion vigor and water consumption, modulate scion phenological development and determine resource availability by root system architecture development. There is, however, a lack of knowledge on spatio-temporal root system development of rootstock genotypes and its interactions with environment and management that prevents efficient knowledge transfer into practice. Hence, winegrowers take only limited advantage of the large variability of existing rootstock genotypes. Models of vineyard water balance combined with root architectural models, using both static and dynamic representations of the root system, seem promising tools to match rootstock genotypes to frequently occurring future drought stress scenarios and address scientific knowledge gaps. In this perspective, we discuss how current developments in vineyard water balance modeling may provide the background for a better understanding of the interplay of rootstock genotypes, environment and management. We argue that root architecture traits are key drivers of this interplay, but our knowledge on rootstock architectures in the field remains limited both qualitatively and quantitatively. We propose phenotyping methods to help close current knowledge gaps and discuss approaches to integrate phenotyping data into different models to advance our understanding of rootstock x environment x management interactions and predict rootstock genotype performance in a changing climate. This could also provide a valuable basis for optimizing breeding efforts to develop new grapevine rootstock cultivars with optimal trait configurations for future growing conditions.
Collapse
Affiliation(s)
- Lukas Fichtl
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Marco Hofmann
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Katrin Kahlen
- Department of Modeling and Systems Analysis, Hochschule Geisenheim University, Geisenheim, Germany
| | - Kai P. Voss-Fels
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Clément Saint Cast
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Nathalie Ollat
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Philippe Vivin
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Simone Loose
- Department of Wine and Beverage Business, Hochschule Geisenheim University, Geisenheim, Germany
| | - Mariem Nsibi
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Timo Strack
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Hans Reiner Schultz
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Jason Smith
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Orange, NSW, Australia
| | - Matthias Friedel
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
2
|
Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M. Root Growth Adaptation to Climate Change in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:544. [PMID: 32457782 PMCID: PMC7227386 DOI: 10.3389/fpls.2020.00544] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
Climate change is threatening crop productivity worldwide and new solutions to adapt crops to these environmental changes are urgently needed. Elevated temperatures driven by climate change affect developmental and physiological plant processes that, ultimately, impact on crop yield and quality. Plant roots are responsible for water and nutrients uptake, but changes in soil temperatures alters this process limiting crop growth. With the predicted variable climatic forecast, the development of an efficient root system better adapted to changing soil and environmental conditions is crucial for enhancing crop productivity. Root traits associated with improved adaptation to rising temperatures are increasingly being analyzed to obtain more suitable crop varieties. In this review, we will summarize the current knowledge about the effect of increasing temperatures on root growth and their impact on crop yield. First, we will describe the main alterations in root architecture that different crops undergo in response to warmer soils. Then, we will outline the main coordinated physiological and metabolic changes taking place in roots and aerial parts that modulate the global response of the plant to increased temperatures. We will discuss on some of the main regulatory mechanisms controlling root adaptation to warmer soils, including the activation of heat and oxidative pathways to prevent damage of root cells and disruption of root growth; the interplay between hormonal regulatory pathways and the global changes on gene expression and protein homeostasis. We will also consider that in the field, increasing temperatures are usually associated with other abiotic and biotic stresses such as drought, salinity, nutrient deficiencies, and pathogen infections. We will present recent advances on how the root system is able to integrate and respond to complex and different stimuli in order to adapt to an increasingly changing environment. Finally, we will discuss the new prospects and challenges in this field as well as the more promising pathways for future research.
Collapse
Affiliation(s)
| | | | | | - M. Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
3
|
López-Salmerón V, Cho H, Tonn N, Greb T. The Phloem as a Mediator of Plant Growth Plasticity. Curr Biol 2020; 29:R173-R181. [PMID: 30836090 DOI: 10.1016/j.cub.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental plasticity, defined as the capacity to respond to changing environmental conditions, is an inherent feature of plant growth. Recent studies have brought the phloem tissue, the quintessential conduit for energy metabolites and inter-organ communication, into focus as an instructive developmental system. Those studies have clarified long-standing questions about essential aspects of phloem development and function, such as the pressure flow hypothesis, mechanisms of phloem unloading, and source-sink relationships. Interestingly, plants with impaired phloem development show characteristic changes in body architecture, thereby highlighting the capacity of the phloem to integrate environmental cues and to fine-tune plant development. Therefore, understanding the plasticity of phloem development provides scenarios of how environmental stimuli are translated into differential plant growth. In this Review, we summarize novel insights into how phloem identity is established and how phloem cells fulfil their core function as transport units. Moreover, we discuss possible interfaces between phloem physiology and development as sites for mediating the plastic growth mode of plants.
Collapse
Affiliation(s)
- Vadir López-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Hyunwoo Cho
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Nina Tonn
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Inyang EI, Hix RL, Tsolova V, Rohde BB, Dosunmu O, Mankin RW. Subterranean Acoustic Activity Patterns of Vitacea polistiformis (Lepidoptera: Sesiidae) in Relation to Abiotic and Biotic Factors. INSECTS 2019; 10:insects10090267. [PMID: 31443578 PMCID: PMC6780318 DOI: 10.3390/insects10090267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Grape root borer (GRB), Vitacea polistiformis, is a root-feeding pest of grapevines in the US southeast that causes underground damage well before vines show visible symptoms. A 269-d study was conducted at 31 sites in a Florida vineyard to record short bursts of insect movement and feeding vibrations in grapevine root systems and provide information that can improve timing and targeting of GRB management efforts. Characteristic spectral and temporal patterns in the subterranean vibrations facilitated discrimination of GRB from background noise and non-targeted arthropods. Infestation likelihood of GRB at each site was estimated from previous studies relating infestation to burst rate. In all, 39% of recordings indicated low infestation likelihood. Sites with medium or high infestation likelihood were confined to a small region of the vineyard where a vine with larval feeding damage was confirmed. The restricted area suggests that the biological control or chemical treatments could be reduced elsewhere. Acoustic activity was significantly greater in fall and winter than in spring, and greater in evening than afternoon; fall evenings seemed best for GRB acoustic surveys. The GRB seasonal and circadian acoustic variation reflected phenological variation in grape root growth and nutrients and was not significantly correlated with temperature.
Collapse
Affiliation(s)
- Edidiong I Inyang
- Center for Biological Control, Florida A&M University (FAMU), Tallahassee, FL 32307, USA
| | - Raymond L Hix
- Center for Biological Control, Florida A&M University (FAMU), Tallahassee, FL 32307, USA
| | | | - Barukh B Rohde
- Electrical and Computer Engineering Department, University of Florida, Gainesville, FL 32611, USA
| | - Omotola Dosunmu
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Richard W Mankin
- US Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA.
| |
Collapse
|