1
|
Aldrich DJ, Taylor M, Bester R, El-Mohtar CA, Burger JT, Maree HJ. Applying infectious clones and untargeted metabolite profiling to characterize citrus tristeza virus-induced stem pitting in citrus. Sci Rep 2024; 14:28490. [PMID: 39557999 PMCID: PMC11573986 DOI: 10.1038/s41598-024-79402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Citrus tristeza virus (CTV) causes economically important stem pitting in sensitive citrus types however the exact mechanisms of stem pitting development in citrus remain unclear. In this study, CTV infectious clones were used to study stem pitting induction in 'Duncan' grapefruit and 'Mexican' lime. A panel of open reading frame (ORF) replacement clones was generated focusing on the CTV ORFs implicated in stem pitting development and pathogenicity, namely p33, p18, p13 and p23. ORF replacements from severe- and mild-pitting CTV isolates were introduced into a mild-pitting infectious clone (genotype T36) to determine if stem pitting could be induced. A broad range of stem pitting outcomes were observed with ORF p18 (from isolate T3-KB) and ORF p23 (from isolate GFMS12-1.3) associated with enhanced stem pitting development. Metabolomic trends underlying the different stem pitting outcomes were further assessed by untargeted metabolite profiling. In each citrus host, the metabolite profiling identified statistically significant compounds that differed between stem pitting groups. These compounds were mainly phenolic acids and phenolic glycosides and are known to function as antioxidant and stress-signaling molecules. These metabolites can serve as targets for future time-course observations to potentially use mass spectrometry profiling to inform CTV management practices.
Collapse
Affiliation(s)
- D J Aldrich
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - M Taylor
- Central Analytical Facilities, Mass Spectrometry Unit, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - R Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Citrus Research International, PO Box 2201, Matieland, 7602, South Africa
| | - C A El-Mohtar
- Plant Pathology Department, Citrus Research and Education Centre (CREC-IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA
| | - J T Burger
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - H J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
- Citrus Research International, PO Box 2201, Matieland, 7602, South Africa.
| |
Collapse
|
2
|
Liu M, Kang B, Wu H, Aranda MA, Peng B, Liu L, Fei Z, Hong N, Gu Q. Transcriptomic and metabolic profiling of watermelon uncovers the role of salicylic acid and flavonoids in the resistance to cucumber green mottle mosaic virus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5218-5235. [PMID: 37235634 DOI: 10.1093/jxb/erad197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Understanding the mechanisms underlying plant resistance to virus infections is crucial for viral disease management in agriculture. However, the defense mechanism of watermelon (Citrullus lanatus) against cucumber green mottle mosaic virus (CGMMV) infection remains largely unknown. In this study, we performed transcriptomic, metabolomic, and phytohormone analyses of a CGMMV susceptible watermelon cultivar 'Zhengkang No.2' ('ZK') and a CGMMV resistant wild watermelon accession PI 220778 (PI) to identify the key regulatory genes, metabolites, and phytohormones responsible for CGMMV resistance. We then tested several phytohormones and metabolites for their roles in watermelon CGMMV resistance via foliar application, followed by CGMMV inoculation. Several phenylpropanoid metabolism-associated genes and metabolites, especially those involved in the flavonoid biosynthesis pathway, were found to be significantly enriched in the CGMMV-infected PI plants compared with the CGMMV-infected 'ZK' plants. We also identified a gene encoding UDP-glycosyltransferase (UGT) that is involved in kaempferol-3-O-sophoroside biosynthesis and controls disease resistance, as well as plant height. Additionally, salicylic acid (SA) biogenesis increased in the CGMMV-infected 'ZK' plants, resulting in the activation of a downstream signaling cascade. SA levels in the tested watermelon plants correlated with that of total flavonoids, and SA pre-treatment up-regulated the expression of flavonoid biosynthesis genes, thus increasing the total flavonoid content. Furthermore, application of exogenous SA or flavonoids extracted from watermelon leaves suppressed CGMMV infection. In summary, our study demonstrates the role of SA-induced flavonoid biosynthesis in plant development and CGMMV resistance, which could be used to breed for CGMMV resistance in watermelon.
Collapse
Affiliation(s)
- Mei Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Baoshan Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Huijie Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, Apdo. correos 164, 30100 Espinardo, Murcia, Spain
| | - Bin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Liming Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinsheng Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
3
|
Sampedro-Guerrero J, Vives-Peris V, Gomez-Cadenas A, Clausell-Terol C. Encapsulation Reduces the Deleterious Effects of Salicylic Acid Treatments on Root Growth and Gravitropic Response. Int J Mol Sci 2022; 23:ijms232214019. [PMID: 36430498 PMCID: PMC9696185 DOI: 10.3390/ijms232214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The role of salicylic acid (SA) on plant responses to biotic and abiotic stresses is well documented. However, the mechanism by which exogenous SA protects plants and its interactions with other phytohormones remains elusive. SA effect, both free and encapsulated (using silica and chitosan capsules), on Arabidopsis thaliana development was studied. The effect of SA on roots and rosettes was analysed, determining plant morphological characteristics and hormone endogenous levels. Free SA treatment affected length, growth rate, gravitropic response of roots and rosette size in a dose-dependent manner. This damage was due to the increase of root endogenous SA concentration that led to a reduction in auxin levels. The encapsulation process reduced the deleterious effects of free SA on root and rosette growth and in the gravitropic response. Encapsulation allowed for a controlled release of the SA, reducing the amount of hormone available and the uptake by the plant, mitigating the deleterious effects of the free SA treatment. Although both capsules are suitable as SA carrier matrices, slightly better results were found with chitosan. Encapsulation appears as an attractive technology to deliver phytohormones when crops are cultivated under adverse conditions. Moreover, it can be a good tool to perform basic experiments on phytohormone interactions.
Collapse
Affiliation(s)
- Jimmy Sampedro-Guerrero
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Aurelio Gomez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castellón de la Plana, Spain
- Correspondence: (A.G.-C.); (C.C.-T.)
| | - Carolina Clausell-Terol
- Departamento de Ingeniería Química, Instituto Universitario de Tecnología Cerámica, Universitat Jaume I, 12071 Castellón de la Plana, Spain
- Correspondence: (A.G.-C.); (C.C.-T.)
| |
Collapse
|
4
|
Makhumbila P, Rauwane M, Muedi H, Figlan S. Metabolome Profiling: A Breeding Prediction Tool for Legume Performance under Biotic Stress Conditions. PLANTS 2022; 11:plants11131756. [PMID: 35807708 PMCID: PMC9268993 DOI: 10.3390/plants11131756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Legume crops such as common bean, pea, alfalfa, cowpea, peanut, soybean and others contribute significantly to the diet of both humans and animals. They are also important in the improvement of cropping systems that employ rotation and fix atmospheric nitrogen. Biotic stresses hinder the production of leguminous crops, significantly limiting their yield potential. There is a need to understand the molecular and biochemical mechanisms involved in the response of these crops to biotic stressors. Simultaneous expressions of a number of genes responsible for specific traits of interest in legumes under biotic stress conditions have been reported, often with the functions of the identified genes unknown. Metabolomics can, therefore, be a complementary tool to understand the pathways involved in biotic stress response in legumes. Reports on legume metabolomic studies in response to biotic stress have paved the way in understanding stress-signalling pathways. This review provides a progress update on metabolomic studies of legumes in response to different biotic stresses. Metabolome annotation and data analysis platforms are discussed together with future prospects. The integration of metabolomics with other “omics” tools in breeding programmes can aid greatly in ensuring food security through the production of stress tolerant cultivars.
Collapse
Affiliation(s)
- Penny Makhumbila
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodeport 1709, South Africa; (M.R.); (S.F.)
- Correspondence:
| | - Molemi Rauwane
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodeport 1709, South Africa; (M.R.); (S.F.)
| | - Hangwani Muedi
- Research Support Services, North West Provincial Department of Agriculture and Rural Development, 114 Chris Hani Street, Potchefstroom 2531, South Africa;
| | - Sandiswa Figlan
- Department of Agriculture and Animal Health, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodeport 1709, South Africa; (M.R.); (S.F.)
| |
Collapse
|
5
|
Zhang Z, He H, Yan M, Zhao C, Lei C, Li J, Yan F. Widely targeted analysis of metabolomic changes of Cucumis sativus induced by cucurbit chlorotic yellows virus. BMC PLANT BIOLOGY 2022; 22:158. [PMID: 35361125 PMCID: PMC8969345 DOI: 10.1186/s12870-022-03555-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plant metabolites play vital roles in regulating the behavior of herbivore insects. Virus infection can universally alter plant metabolites to manipulate the orientation and feeding behaviors of insect vector, to favor the transmission of virus. Thus, determining the differentially accumulated metabolites of plant upon virus infection could provide insights into understanding how the triple interactions among plant, virus and insect vector happens. Our previous studies have found that vector whitefly Bemisia tabaci (Gennadius, Hemiptera: Aleyrodidae) showed different orientation behavior and performance on CCYV-infected and healthy cucumber plants. Cucurbit chlorotic yellows virus (CCYV) is exclusively transmitted by B. tabaci in a semi-persistent mode. In this study, we take the CCYV, B. tabaci and cucumber as a research system to explore the functions of phyto-metabolites in the triple interactions. RESULTS A total of 612 metabolites changed upon CCYV infection were monitored. Metabolites mainly enriched in flavonoids, lipids, nucleotides and their derivatives. At 7 days post CCYV inoculation (dpi), the contents of lipids, terpenoids and flavonoids remarkably decreased, while amino acids, nucleotides and their derivatives notably up-accumulated. At 15 dpi, the accumulation of flavonoids were still significantly reduced upon CCYV infection, while lipids, amino acids, nucleotides and derivatives were remarkably enhanced. Most of significantly increased metabolites were lipids (lysophosphatidylethanolamine, LPE; lysophosphatidylcholine, LPC and their isomers). Also, the number of significantly changed metabolites increased with the infection period. However, only a few organic acids and phenolic acids showed difference between CCYV-infected and healthy cucumber plants. CONCLUSIONS CCYV infection repressed the defensive flavonoids, terpeneoids metabolism but triggered the lipids, amino acids and nucleotides metabolism with the inoculation period. This result suggests that CCYV-infection makes cucumber plants more susceptible for whiteflies attack and CCYV infection. The reduction of defensive comounds and the increase of amino acids may be partially responsible for enhancing feeding preference of whiteflies to CCYV-infected hosts. CCYV may hijacked lipid metabolism for virus replication and assembly.
Collapse
Affiliation(s)
- Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Minghui Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Caiyan Lei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| |
Collapse
|
6
|
Camisón Á, Martín MÁ, Sánchez-Bel P, Flors V, Alcaide F, Morcuende D, Pinto G, Solla A. Hormone and secondary metabolite profiling in chestnut during susceptible and resistant interactions with Phytophthora cinnamomi. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153030. [PMID: 31493717 DOI: 10.1016/j.jplph.2019.153030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/20/2023]
Abstract
Phytophthora cinnamomi (Pc) is a dangerous pathogen that causes root rot (ink disease) and threatens the production of chestnuts worldwide. Despite all the advances recently reported at molecular and physiological level, there are still gaps of knowledge that would help to unveil the defence mechanisms behind plant-Pc interactions. Bearing this in mind we quantified constitutive and Pc-induced stress-related signals (hormones and metabolites) complemented with changes in photosynthetic related parameters by exploring susceptible and resistant Castanea spp.-Pc interactions. In a greenhouse experiment, five days before and nine days after inoculation with Pc, leaves and fine roots from susceptible C. sativa and resistant C. sativa × C. crenata clonal 2-year-old plantlets were sampled (clones Cs14 and 111-1, respectively). In the resistant clone, stomatal conductance (gs) and net photosynthesis (A) decreased significantly and soluble sugars in leaves increased, while in the susceptible clone gs and A remained unchanged and proline levels in leaves increased. In the resistant clone, higher constitutive content of root SA and foliar ABA, JA and JA-Ile as compared to the susceptible clone were observed. Total phenolics and condensed tannins were highest in roots of the susceptible clone. In response to infection, a dynamic hormonal response in the resistant clone was observed, consisting of accumulation of JA, JA-Ile and ABA in roots and depletion of total phenolics in leaves. However, in the susceptible clone only JA diminished in leaves and increased in roots. Constitutive and Pc-induced levels of JA-Ile were only detectable in the resistant clone. From the hormonal profiles obtained in leaves and roots before and after infection, it is concluded that the lack of effective hormonal changes in C. sativa explains the lack of defence responses to Pc of this susceptible species.
Collapse
Affiliation(s)
- Álvaro Camisón
- Institute for Dehesa Research (INDEHESA), Ingeniería Forestal y del Medio Natural, Universidad de Extremadura, Avenida Virgen del Puerto 2, 10600, Plasencia, Spain
| | - M Ángela Martín
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Carretera Nacional IV Km 396, 14014, Córdoba, Spain
| | - Paloma Sánchez-Bel
- Escuela Superior de Tecnología y Ciencias Experimentales, Universidad Jaume I, Avenida Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Víctor Flors
- Escuela Superior de Tecnología y Ciencias Experimentales, Universidad Jaume I, Avenida Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Francisco Alcaide
- Institute for Dehesa Research (INDEHESA), Ingeniería Forestal y del Medio Natural, Universidad de Extremadura, Avenida Virgen del Puerto 2, 10600, Plasencia, Spain
| | - David Morcuende
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, Avenida de las Ciencias s/n, 10003, Cáceres, Spain
| | - Glória Pinto
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Alejandro Solla
- Institute for Dehesa Research (INDEHESA), Ingeniería Forestal y del Medio Natural, Universidad de Extremadura, Avenida Virgen del Puerto 2, 10600, Plasencia, Spain.
| |
Collapse
|