1
|
Mel R, Rampitsch C, Zvomuya F, Nilsen KT, Beattie AD, Malalgoda M. Determining the Impact of Genotype × Environment on Oat Protein Isolate Composition Using HPLC and LC-MS Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8103-8113. [PMID: 38530645 DOI: 10.1021/acs.jafc.3c07486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The effect of genotype and environment on oat protein composition was analyzed through size exclusion-high-performance liquid chromatography (SE-HPLC) and liquid chromatography-mass spectrometry (LC-MS) to characterize oat protein isolate (OPI) extracted from three genotypes grown at three locations in the Canadian Prairies. SE-HPLC identified four fractions in OPI, including polymeric globulins, avenins, glutelins, and albumins, and smaller proteins. The protein composition was dependent on the environment, rather than the genotype. The proteins identified through LC-MS were grouped into eight categories, including globulins, prolamins/avenins, glutelins, enzymes/albumins, enzyme inhibitors, heat shock proteins, grain softness proteins, and allergenic proteins. Three main globulin protein types were also identified, including the P14812|SSG2-12S seed storage globulin, the Q6UJY8_TRITU-globulin, and the M7ZQM3_TRIUA-Globulin-1 S. Principal component analysis indicated that samples from Manitoba showed a positive association with the M7ZQM3_TRIUA-Globulin-1 S allele and Q6UJY8_TRITU-globulin, while samples from Alberta and Saskatchewan had a negative association with them. The results show that the influence of G × E on oat protein fractions and their relative composition is crucial to understanding genotypes' behavior in response to different environments.
Collapse
Affiliation(s)
- Roshema Mel
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kirby T Nilsen
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Aaron D Beattie
- Crop Development Center, University of Saskatchewan, Saskatoon, Saskatchewan R3T 2N2, Canada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
2
|
Augustine L, Varghese L, Kappachery S, Ramaswami VM, Surendrababu SP, Sakuntala M, Thomas G. Comparative analyses reveal a phenylalanine ammonia lyase dependent and salicylic acid mediated host resistance in Zingiber zerumbet against the necrotrophic soft rot pathogen Pythium myriotylum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111972. [PMID: 38176527 DOI: 10.1016/j.plantsci.2023.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Little is known about the molecular basis of host defense in resistant wild species Zingiber zerumbet (L.) Smith against the soil-borne, necrotrophic oomycete pathogen Pythium myriotylum Drechsler, which causes the devastating soft rot disease in the spice crop ginger (Zingiber officinale Roscoe). We investigated the pattern of host defense between Z. zerumbet and ginger in response to P. myriotylum inoculation. Analysis of gene expression microarray data revealed enrichment of phenylpropanoid biosynthetic genes, particularly lignin biosynthesis genes, in pathogen-inoculated Z. zerumbet compared to ginger. RT-qPCR analysis showed the robust activation of phenylpropanoid biosynthesis genes in Z. zerumbet, including the core genes PAL, C4H, 4CL, and the monolignol biosynthesis and polymerization genes such as CCR, CAD, C3H, CCoAOMT, F5H, COMT, and LAC. Additionally, Z. zerumbet exhibited the accumulation of the phenolic acids including p-coumaric acid, sinapic acid, and ferulic acid that are characteristic of the cell walls of commelinoid monocots like Zingiberaceae and are involved in cell wall strengthening by cross linking with lignin. Z. zerumbet also had higher total lignin and total phenolics content compared to pathogen-inoculated ginger. Phloroglucinol staining revealed the enhanced fortification of cell walls in Z. zerumbet, specifically in xylem vessels and surrounding cells. The trypan blue staining indicated inhibition of pathogen growth in Z. zerumbet at the first leaf whorl, while ginger showed complete colonization of the pith within 36 h post inoculation (hpi). Accumulation of salicylic acid (SA) and induction of SA regulator NPR1 and the signaling marker PR1 were observed in Z. zerumbet. Silencing of PAL in Z. zerumbet through VIGS suppressed downstream genes, leading to reduced phenylpropanoid accumulation and SA level, resulting in the susceptibility of plants to P. myriotylum. These findings highlight the essential role of PAL-dependent mechanisms in resistance against P. myriotylum in Z. zerumbet. Moreover, our results suggest an unconventional role for SA in mediating host resistance against a necrotroph. Targeting the phenylpropanoid pathway could be a promising strategy for the effective management of P. myriotylum in ginger.
Collapse
Affiliation(s)
- Lesly Augustine
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Lini Varghese
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Sajeesh Kappachery
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Vinitha Meenakshy Ramaswami
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Swathy Puthanvila Surendrababu
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India.
| | - Manjula Sakuntala
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - George Thomas
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
3
|
Bykova NV, Rampitsch C, Igamberdiev AU. Plant proteomics: From the molecular basis of biological processes to a systems biology perspective. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153880. [PMID: 36455335 DOI: 10.1016/j.jplph.2022.153880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Natalia V Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| | - Christof Rampitsch
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, 45 Arctic Avenue, A1C 5S7, Canada.
| |
Collapse
|