1
|
Gilad G, Sapir O, Hipsch M, Waiger D, Ben-Ari J, Zeev BB, Zait Y, Lampl N, Rosenwasser S. Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39789668 DOI: 10.1111/pce.15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-EGSH) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1). Mutant lines incorporated significantly less isotopically-labelled nitrate into amino acids than wild-type plants, demonstrating impaired nitrogen assimilation. When nitrate assimilation was compromised, photosystem II (PSII) proved more vulnerable to photodamage. The effect of the nitrate assimilation pathway on the chl- EGSH was monitored using the chloroplast-targeted roGFP2 biosensor (chl-roGFP2). Remarkably, while oxidation followed by reduction of chl-roGFP2 was detected in WT plants in response to high light, oxidation values were stable in the mutant lines, suggesting that chl-EGSH relaxation after high light-induced oxidation is achieved by diverting excess electrons to the nitrogen assimilation pathway. Importantly, similar ΦPSII and chl-roGFP2 patterns were observed at elevated CO2, suggesting that mutant phenotypes are not associated with photorespiration activity. Together, these findings indicate that the nitrogen assimilation pathway serves as a sustainable energy dissipation route, ensuring efficient photosynthetic activity and fine-tuning redox metabolism under light-saturated conditions.
Collapse
Affiliation(s)
- Gal Gilad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Omer Sapir
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Daniel Waiger
- Center for Scientific Imaging Core Facility, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Julius Ben-Ari
- The Laboratory for the Mass Spectrometry and Chromatography Interdepartmental Analytical Unit (TZABAM), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Bar Ben Zeev
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yotam Zait
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Shi X, Hannon NM, Bloom AJ. Carboxylation and Oxygenation Kinetics and Large Subunit (rbcL) DNA Sequences for Rubisco From Two Ecotypes of Plantago lanceolata L. That Are Native to Sites Differing in Atmospheric CO 2 Levels. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39718138 DOI: 10.1111/pce.15346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Rubisco, the most prevalent protein on Earth, catalysers both a reaction that initiates C3 carbon fixation, and a reaction that initiates photorespiration, which stimulates protein synthesis. Regulation of the balance between these reactions under atmospheric CO2 fluctuations remains poorly understood. We have hypothesised that vascular plants maintain organic carbon-to-nitrogen homoeostasis by adjusting the relative activities of magnesium and manganese in chloroplasts to balance carbon fixation and nitrate assimilation rates. The following examined the influence of magnesium and manganese on carboxylation and oxygenation for rubisco purified from two ecotypes of Plantago lanceolata L.: one adapted to the elevated CO2 atmospheres that occur near a natural CO2 spring and the other adapted to more typical CO2 atmospheres that occur nearby. The plastid DNA coding for the large unit of rubisco was similar in both ecotypes. The kinetics of rubiscos from the two ecotypes differed more when associated with manganese than magnesium. Specificity for CO2 over O2 (Sc/o) for rubisco from both ecotypes was higher when the enzymes were bound to magnesium than manganese. Differences in the responses of rubisco from P. lanceolata to the metals may account for the adaptation of this species to different CO2 environments.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Department of Plant Sciences, University of California at Davis, Davis, California, USA
| | - Nathan M Hannon
- Department of Plant Sciences, University of California at Davis, Davis, California, USA
| | - Arnold J Bloom
- Department of Plant Sciences, University of California at Davis, Davis, California, USA
| |
Collapse
|
3
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Westhoff P, Weber APM. The role of metabolomics in informing strategies for improving photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1696-1713. [PMID: 38158893 DOI: 10.1093/jxb/erad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Photosynthesis plays a vital role in acclimating to and mitigating climate change, providing food and energy security for a population that is constantly growing, and achieving an economy with zero carbon emissions. A thorough comprehension of the dynamics of photosynthesis, including its molecular regulatory network and limitations, is essential for utilizing it as a tool to boost plant growth, enhance crop yields, and support the production of plant biomass for carbon storage. Photorespiration constrains photosynthetic efficiency and contributes significantly to carbon loss. Therefore, modulating or circumventing photorespiration presents opportunities to enhance photosynthetic efficiency. Over the past eight decades, substantial progress has been made in elucidating the molecular basis of photosynthesis, photorespiration, and the key regulatory mechanisms involved, beginning with the discovery of the canonical Calvin-Benson-Bassham cycle. Advanced chromatographic and mass spectrometric technologies have allowed a comprehensive analysis of the metabolite patterns associated with photosynthesis, contributing to a deeper understanding of its regulation. In this review, we summarize the results of metabolomics studies that shed light on the molecular intricacies of photosynthetic metabolism. We also discuss the methodological requirements essential for effective analysis of photosynthetic metabolism, highlighting the value of this technology in supporting strategies aimed at enhancing photosynthesis.
Collapse
Affiliation(s)
- Philipp Westhoff
- CEPLAS Plant Metabolomics and Metabolism Laboratory, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|