1
|
Sarvary Korojdeh M, Hadavifar M, Birjandi N, Mehrkhah R, Li Q. Enhanced bioenergy production through dual-chamber microbial fuel cells: Utilizing citric acid factory wastewater and grape waste as substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122739. [PMID: 39368388 DOI: 10.1016/j.jenvman.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION Microbial fuel cell (MFC) is a variant of the bio-electro-chemical system that uses microorganisms as biocatalysts to generate bioenergy by oxidizing organic matter. Due to its two-prong feature of simultaneously treating wastewater and generating electricity, it has drawn extensive interest by scientific communities around the world. However, the pollution purifying capacity and power production of MFC at the laboratory scale have tended to remain steady, and there have been no reports of a performance breakthrough. PROBLEM STATEMENT This research was conducted to produce electricity and evaluate the efficiency of chemical oxygen demand (COD) removal from wastewater containing Citric Acid using a two-chamber microbial fuel cell without an intermediary. METHODOLOGY In this research, citric acid factory wastewater was used as the substrate, graphite as the electrode, Nafion membrane for proton transfer from anode to cathode, and grape waste as a carbon source. These Experiments were performed at room temperature and neutral pH. Also, the effect of three independent variables mixed liquor suspended solid (MLSS), Carbon: Nitrogen: Phosphorus stoichiometric ratio (COD:TKN:P), and grape waste on electricity production and wastewater treatment was investigated. Then, the optimal values of each variable were determined under favorable conditions for electricity generation and COD reduction. RESULTS The MFC was conducted at the optimal values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P 140:10:1, and the grape waste dose of 1.4 g/L. At these conditions, the obtained maximum power density and current density were 18228.10 µW/m2 and 244.44 mA/m2, respectively. The maximum COD removal was 72% achieved in the values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P equal to 260:10:1, and 1.4 g/L of grape waste. The maximum open circuit voltage was also recorded as 678 mV, obtained at MLSS 3000 mg/L, the stoichiometric ratio of COD:TKN:P equal to 200:10:1, and for a grape waste dose of 2 g/L. CONCLUSION The results of this research showed that the use of grape waste to supply glucose to microorganisms in the MFC system has a significant effect on increasing energy production and COD removal, and it is recommended to conduct additional research in the future to improve the efficiency. However, scalability and practical application potential of these integrated technologies are the challenges towards their real-world applications in small scale trials.
Collapse
Affiliation(s)
| | - Mojtaba Hadavifar
- Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, 397, Iran.
| | - Noushin Birjandi
- Department of Environmental Sciences and Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran
| | - Roya Mehrkhah
- Michigan Technology Co., Ltd, Techno B-502, Ulsan Technopark, Jonggaro 15, Junggu, Ulsan, 44412, South Korea
| | - Qin Li
- School of Engineering and Built Environment, Griffith University, Nathan, Australia
| |
Collapse
|
2
|
Ajit K, Anil A, Krishnan H, Asok A. Microporous nitrogen-rich biomass derived anode catalyst in clay membrane MFC for kitchen wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2024; 45:5536-5547. [PMID: 38118134 DOI: 10.1080/09593330.2023.2296532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Microbial fuel cells (MFC) have emerged as a sustainable wastewater treatment technique that offers simultaneous energy generation; however, the high cost of electrodes and their reduced catalytic activity have hindered their widespread adoption. To overcome this, an activated carbon synthesised from Areca nut husk was coated on different anodes viz. Carbon cloth and Stainless Steel (SS) mesh. Activated carbon was found to be highly porous with a carbon content of 85.39%, and a surface area of 767.98 m2/g, and was found to be amorphous with a high degree of graphitic structure. The electrical conductivities of the catalyst-coated SS mesh and carbon cloth were comparable, and the performance of the MFC was studied using both electrodes as anodes. A batch MFC with modified SS mesh as anode exhibited the highest power density of 155.35 mW/m3 in synthetic wastewater and 101.68 mW/m3 in kitchen wastewater, with COD removal efficiencies of 95.32% and 95.24%, respectively. In a continuous mode, the MFC delivered a maximum current density and power of 52.38 mA/m2 and 21.60 mW, respectively, with a maximum COD removal efficiency of 80.70% for an HRT of 20 hrs. These findings underscore the viability of using biomass-derived activated carbon as an anode catalyst in both batch and continuous modes of MFC.
Collapse
Affiliation(s)
- Karnapa Ajit
- Department of Chemical Engineering, National Institute of Technology, Calicut, Kozhikode, India
| | - Ardra Anil
- Department of Chemical Engineering, Amal Jyothi College of Engineering, Kottayam, India
| | - Haribabu Krishnan
- Department of Chemical Engineering, National Institute of Technology, Calicut, Kozhikode, India
| | - Aswathy Asok
- Department of Chemical Engineering, Amal Jyothi College of Engineering, Kottayam, India
| |
Collapse
|
3
|
Tamilarasan K, Shabarish S, Rajesh Banu J, Godvin Sharmila V. Sustainable power production from petrochemical industrial effluent using dual chambered microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119777. [PMID: 38086119 DOI: 10.1016/j.jenvman.2023.119777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Dual chambered microbial fuel cell (DMFC) is an advanced and effective treatment technology in wastewater treatment. The current work has made an effort to treat petrochemical industrial wastewater (PWW) as a DMFC substrate for power generation and organic substance removal. Investigating the impact of organic load (OL) on organic reduction and electricity generation is the main objective of this study. At the OL of 1.5 g COD/L, the highest total chemical oxygen demand (TCOD) removal efficiency of 88%, soluble oxygen demand (SCOD) removal efficiency of 80% and total suspended solids (TSS) removal efficiency of 71% were seen, respectively. In the same optimum condition of 1.5 g COD/L, the highest current and power density of about 270 mW/m2 and 376 mA/m2 were also observed. According to the results of this study, using high-strength organic wastewater in DMFC can assist in addressing the issue of the petrochemical industries and minimize the energy demand.
Collapse
Affiliation(s)
- K Tamilarasan
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - S Shabarish
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam, 629171, Tamil Nadu, India.
| |
Collapse
|
4
|
Sorgato AC, Jeremias TC, Lobo FL, Lapolli FR. Microbial fuel cell: Interplay of energy production, wastewater treatment, toxicity assessment with hydraulic retention time. ENVIRONMENTAL RESEARCH 2023; 231:116159. [PMID: 37211179 DOI: 10.1016/j.envres.2023.116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Microbial fuel cell (MFC) operation under similar conditions to conventional methods will support the use of this technology in large-scale wastewater treatment. The operation of scaled-up air-cathode MFC (2 L) fed with synthetic wastewater (similar to domestic) in a continuous flow was evaluated using three different hydraulic retention times (HRT), 12, 8, and 4 h. We found that electricity generation and wastewater treatment could be enhanced under an HRT of 12 h. Additionally, the longer HRT led to greater coulombic efficiency (5.44%) than MFC operating under 8 h and 4 h, 2.23 and 1.12%, respectively. However, due to the anaerobic condition, the MFC was unable to remove nutrients. Furthermore, an acute toxicity test with Lactuca sativa revealed that MFC could reduce wastewater toxicity. These outcomes demonstrated that scaled-up MFC could be operated as a primary effluent treatment and transform a wastewater treatment plant (WWTP) into a renewable energy producer.
Collapse
Affiliation(s)
- Ana Carla Sorgato
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, 88.040-900, Florianópolis, SC, Brazil.
| | - Thamires Custódio Jeremias
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, 88.040-900, Florianópolis, SC, Brazil
| | - Fernanda Leite Lobo
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará (UFC), Campus Do Pici, 60.440-900, Fortaleza, CE, Brazil
| | - Flávio Rubens Lapolli
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, 88.040-900, Florianópolis, SC, Brazil
| |
Collapse
|
5
|
Li D, Sun Y, Shi Y, Wang Z, Okeke S, Yang L, Zhang W, Xiao L. Structure evolution of air cathodes and their application in electrochemical sensor development and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161689. [PMID: 36682546 DOI: 10.1016/j.scitotenv.2023.161689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Cathode structure and material are the most important factors to determine the performance and cost of single chamber air-cathode microbial fuel cell (MFC), which is the most promising type of MFC technology. Since the first air cathode was invented in 2004, five major structures (1-layer, 2-layer, 3-layer, 4-layer and separator-support) have been invented and modified to fit new material, improve power performance and lower MFC cost. This paper reviewed the structure evolution of air cathodes in past 18 years. The benefits and drawbacks of these structures, in terms of power generation, material cost, fabrication procedure and modification process are analyzed. The practical application cases (e.g., sensor development and wastewater treatment) employed with different cathode structures were also summarized and analyzed. Based on practical performance and long-term cost analysis, the 2-layer cathode demonstrated much greater potential over other structures. Compared with traditional activated-sludge technology, the cost of an MFC-based system is becoming competitive when employing with 2-layer structure. This review not only provides a detailed development history of air cathode but also reveals the advantages/disadvantages of air cathode with different structures, which will promote the research and application of air-cathode MFC technology.
Collapse
Affiliation(s)
- Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Saviour Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
6
|
Shi J, Zhou X, Jia P, Cai K. Ion Separation Together with Water Purification via a New Type of Nanotube: A Molecular Dynamics Study. Int J Mol Sci 2023; 24:ijms24076677. [PMID: 37047650 PMCID: PMC10094855 DOI: 10.3390/ijms24076677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 04/14/2023] Open
Abstract
We propose a CNT-based concentric twin tube (CTT) as nanochannels for both water purification and ion separation at the nanoscale. In the model, a source reservoir dealing with the solution connects three containers via the CTT that has three subchannels for mass transfer. Before entering the three subchannels, the solution in the separating zone will form three layers (the aqua cations, water, and the aqua anions, respectively) by applying a charged capacitor with the two electrodes parallel to the flow direction of the solution. Under an electric field with moderate intensity, the three subchannels in the CTT have stable configurations for mass transfer. Since the water and the two types of aqua ions are collected by three different containers, the present model can realize both ion separation and water purification. The mass transfer in the subchannels will be sped up by an external pressure exerted on the solution in the source reservoir. The physical properties of the model, e.g., water purification speed, are analyzed with respect to the effects of the electric field, the size of CTT, and the concentration of solute, such as NaCl.
Collapse
Affiliation(s)
- Jiao Shi
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
| | - Xin Zhou
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
| | - Pan Jia
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Kun Cai
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Svane KL, Rossmeisl J. Theoretical Optimization of Compositions of High-Entropy Oxides for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202201146. [PMID: 35225378 PMCID: PMC9314724 DOI: 10.1002/anie.202201146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 11/30/2022]
Abstract
High-entropy oxides are oxides consisting of five or more metals incorporated in a single lattice, and the large composition space suggests that properties of interest can be readily optimised. For applications within catalysis, the different local atomic environments result in a distribution of binding energies for the catalytic intermediates. Using the oxygen evolution reaction on the rutile (110) surface as example, here we outline a strategy for the theoretical optimization of the composition. Density functional theory calculations performed for a limited number of sites are used to fit a model that predicts the reaction energies for all possible local atomic environments. Two reaction pathways are considered; the conventional pathway on the coordinatively unsaturated sites and an alternative pathway involving transfer of protons to a bridging oxygen. An explicit model of the surface is constructed to describe the interdependency of the two pathways and identify the composition that maximizes catalytic activity.
Collapse
Affiliation(s)
- Katrine L. Svane
- Center for High Entropy Alloy CatalysisDepartment of ChemistryCopenhagen UniversityUniversitetsparken 52100København KDenmark
| | - Jan Rossmeisl
- Center for High Entropy Alloy CatalysisDepartment of ChemistryCopenhagen UniversityUniversitetsparken 52100København KDenmark
| |
Collapse
|