1
|
Holguín-Ruíz JA, Rodríguez L, Ferreira-Galvao FH, Muñoz-Botina J, Bedoya Duque MA, Varela-Vásquez MDM, Rodríguez-Galviz H, Zambrano-Galeano R, Castaño-Valencia S, Gutiérrez-Montes JO. An innovative ear transplantation for vascularized composite allotransplantation research in porcine model. Sci Rep 2024; 14:30896. [PMID: 39730666 DOI: 10.1038/s41598-024-81908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Vascularized composite allotransplantation (VCA) represents a clinical challenge for transplant therapy, as it involves different tissues with unique immunogenicity. Even when receiving immunosuppressive therapy, they are more vulnerable to severe hypoxia, microvascular damage, and ultimately the rejection or chronic graft dysfunction after transplantation. This study aimed to develop a surgical protocol for VCA of the ear in a porcine biomodel in the absence of immunosuppression, maintaining the in vitro co-culture of the allograft and assessing their relationship with allograft survival. We employed four crossbred pigs and four outbred mini pig biomodels (Sus scrofa), as donors and recipients, to perform four VCAs. Blood samples were taken from each biomodel for crossmatch testing and SLA haplotype identification. Bone marrow samples were taken from each recipient for subsequent co-culture. In vitro culture and co-culture conditions were maintained and assessed. Histological analysis using hematoxylin and eosin staining was performed on the allograft that lasted the longest time showing the smallest macroscopic signs of rejection. A surgical protocol for Vascularized Composite Allograft (VCA) ear transplantation in a porcine biomodel was developed, including the skin. The presence of SLA-DRB1*01:02 and SLA-DRB1*06:01 haplotypes in the recipient and donor, respectively, showed concordance with positive crossmatch tests. In the allograft with the highest survival time, no histological signs of hyperacute rejection were found ten days after transplantation in the anastomosis area. The results obtained from this protocol can provide valuable recommendations for translational applications in face transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Jorge A Holguín-Ruíz
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043
- School of Basic Sciences Department of Physiological Sciences, Universidad del Valle, Cali, Colombia, 760043
| | - Laura Rodríguez
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043.
- Department of Pharmaceutical and Chemical Sciences, Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia, 760008.
| | | | - Jaime Muñoz-Botina
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043
- School of Basic Sciences Department of Physiological Sciences, Universidad del Valle, Cali, Colombia, 760043
| | - Maria Alejandra Bedoya Duque
- Department of Pharmaceutical and Chemical Sciences, Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia, 760008
| | - María Del Mar Varela-Vásquez
- Department of Pharmaceutical and Chemical Sciences, Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia, 760008
| | | | | | - Santiago Castaño-Valencia
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043
- School of Basic Sciences Department of Physiological Sciences, Universidad del Valle, Cali, Colombia, 760043
| | - José Oscar Gutiérrez-Montes
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043
- School of Basic Sciences Department of Physiological Sciences, Universidad del Valle, Cali, Colombia, 760043
| |
Collapse
|
2
|
Lopez CD, Girard AO, Lake IV, Suresh V, Abdou H, Morrison JJ, Yang R, Gordon CR, Redett RJ. Skull and Scalp En-Bloc Harvest Protects Calvarial Perfusion: A Cadaveric Study. J Reconstr Microsurg 2024; 40:171-176. [PMID: 37146645 DOI: 10.1055/a-2087-2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Calvarial defects are severe injuries that can result from a wide array of etiologies. Reconstructive modalities for these clinical challenges include autologous bone grafting or cranioplasty with biocompatible alloplastic materials. Unfortunately, both approaches are limited by factors such as donor site morbidly, tissue availability, and infection. Calvarial transplantation offers the potential opportunity to address skull defect form and functional needs by replacing "like-with-like" tissue but remains poorly investigated. METHODS Three adult human cadavers underwent circumferential dissection and osteotomy to raise the entire scalp and skull en-bloc. The vascular pedicles of the scalp were assessed for patency and perfused with color dye, iohexol contrast agent for computed tomography (CT) angiography, and indocyanine green for SPY-Portable Handheld Imager assessment of perfusion to the skull. RESULTS Gross changes were appreciated to the scalp with color dye, but not to bone. CT angiography and SPY-Portable Handheld Imager assessment confirmed perfusion from the vessels of the scalp to the skull beyond midline. CONCLUSION Calvarial transplantation may be a technically viable option for skull defect reconstruction that requires vascularized composite tissues (bone and soft tissue) for optimal outcomes.
Collapse
Affiliation(s)
- Christopher D Lopez
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alisa O Girard
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel V Lake
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Visakha Suresh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hossam Abdou
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Jonathan J Morrison
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Robin Yang
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chad R Gordon
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard J Redett
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Lopez CD, Girard AO, Lake IV, Suresh V, Abdou H, Morrison JJ, Yang R, Gordon CR, Redett RJ. Skull and Scalp En-Bloc Harvest Protects Calvarial Perfusion: A Cadaveric Study. J Reconstr Microsurg 2023. [PMID: 37406669 DOI: 10.1055/s-0043-1769508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Calvarial defects are severe injuries that can result from a wide array of etiologies. Reconstructive modalities for these clinical challenges include autologous bone grafting or cranioplasty with biocompatible alloplastic materials. Unfortunately, both approaches are limited by factors such as donor site morbidly, tissue availability, and infection. Calvarial transplantation offers the potential opportunity to address skull defect form and functional needs by replacing "like-with-like" tissue but remains poorly investigated. METHODS Three adult human cadavers underwent circumferential dissection and osteotomy to raise the entire scalp and skull en-bloc. The vascular pedicles of the scalp were assessed for patency and perfused with color dye, iohexol contrast agent for computed tomography (CT) angiography, and indocyanine green for SPY-Portable Handheld Imager assessment of perfusion to the skull. RESULTS Gross changes were appreciated to the scalp with color dye, but not to bone. CT angiography and SPY-Portable Handheld Imager assessment confirmed perfusion from the vessels of the scalp to the skull beyond midline. DISCUSSION/CONCLUSION Calvarial transplantation may be a technically viable option for skull defect reconstruction that requires vascularized composite tissues (bone and soft tissue) for optimal outcomes.
Collapse
Affiliation(s)
- Christopher D Lopez
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alisa O Girard
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel V Lake
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Visakha Suresh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hossam Abdou
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Jonathan J Morrison
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Robin Yang
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chad R Gordon
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard J Redett
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Verma N, Knudsen B, Gholston A, Skubal A, Blanz S, Settell M, Frank J, Trevathan J, Ludwig K. Microneurography as a minimally invasive method to assess target engagement during neuromodulation. J Neural Eng 2023; 20:10.1088/1741-2552/acc35c. [PMID: 36898148 PMCID: PMC10587909 DOI: 10.1088/1741-2552/acc35c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Objective.Peripheral neural signals recorded during neuromodulation therapies provide insights into local neural target engagement and serve as a sensitive biomarker of physiological effect. Although these applications make peripheral recordings important for furthering neuromodulation therapies, the invasive nature of conventional nerve cuffs and longitudinal intrafascicular electrodes (LIFEs) limit their clinical utility. Furthermore, cuff electrodes typically record clear asynchronous neural activity in small animal models but not in large animal models. Microneurography, a minimally invasive technique, is already used routinely in humans to record asynchronous neural activity in the periphery. However, the relative performance of microneurography microelectrodes compared to cuff and LIFE electrodes in measuring neural signals relevant to neuromodulation therapies is not well understood.Approach.To address this gap, we recorded cervical vagus nerve electrically evoked compound action potentials (ECAPs) and spontaneous activity in a human-scaled large animal model-the pig. Additionally, we recorded sensory evoked activity and both invasively and non-invasively evoked CAPs from the great auricular nerve. In aggregate, this study assesses the potential of microneurography electrodes to measure neural activity during neuromodulation therapies with statistically powered and pre-registered outcomes (https://osf.io/y9k6j).Main results.The cuff recorded the largest ECAP signal (p< 0.01) and had the lowest noise floor amongst the evaluated electrodes. Despite the lower signal to noise ratio, microneurography electrodes were able to detect the threshold for neural activation with similar sensitivity to cuff and LIFE electrodes once a dose-response curve was constructed. Furthermore, the microneurography electrodes recorded distinct sensory evoked neural activity.Significance.The results show that microneurography electrodes can measure neural signals relevant to neuromodulation therapies. Microneurography could further neuromodulation therapies by providing a real-time biomarker to guide electrode placement and stimulation parameter selection to optimize local neural fiber engagement and study mechanisms of action.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Bruce Knudsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron Gholston
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron Skubal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Stephan Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Megan Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Jennifer Frank
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - James Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Kip Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
5
|
Gómez-Prado J, Pereira AMF, Wang D, Villanueva-García D, Domínguez-Oliva A, Mora-Medina P, Hernández-Avalos I, Martínez-Burnes J, Casas-Alvarado A, Olmos-Hernández A, Ramírez-Necoechea R, Verduzco-Mendoza A, Hernández A, Torres F, Mota-Rojas D. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: An overview. Front Vet Sci 2022; 9:1023294. [PMID: 36532356 PMCID: PMC9751486 DOI: 10.3389/fvets.2022.1023294] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Specific anatomical characteristics make the porcine species especially sensitive to extreme temperature changes, predisposing them to pathologies and even death due to thermal stress. Interest in improving animal welfare and porcine productivity has led to the development of various lines of research that seek to understand the effect of certain environmental conditions on productivity and the impact of implementing strategies designed to mitigate adverse effects. The non-invasive infrared thermography technique is one of the tools most widely used to carry out these studies, based on detecting changes in microcirculation. However, evaluations using this tool require reliable thermal windows; this can be challenging because several factors can affect the sensitivity and specificity of the regions selected. This review discusses the thermal windows used with domestic pigs and the association of thermal changes in these regions with the thermoregulatory capacity of piglets and hogs.
Collapse
Affiliation(s)
- Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Polo da Mitra, Évora, Portugal
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ramiro Ramírez-Necoechea
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Astrid Hernández
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Fabiola Torres
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| |
Collapse
|
6
|
Decellularization of the Porcine Ear Generates a Biocompatible, Nonimmunogenic Extracellular Matrix Platform for Face Subunit Bioengineering. Ann Surg 2019; 267:1191-1201. [PMID: 28252516 DOI: 10.1097/sla.0000000000002181] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of this study was to assess whether perfusion-decellularization technology could be applied to facial grafts. BACKGROUND Facial allotransplantation remains an experimental procedure. Regenerative medicine techniques allow fabrication of transplantable organs from an individual's own cells, which are seeded into extracellular matrix (ECM) scaffolds from animal or human organs. Therefore, we hypothesized that ECM scaffolds also can be created from facial subunits. We explored the use of the porcine ear as a clinically relevant face subunit model to develop regenerative medicine-related platforms for facial bioengineering. METHODS Porcine ear grafts were decellularized and histologic, immunologic, and cell culture studies done to determine whether scaffolds retained their 3D framework and molecular content; were biocompatible in vitro and in vivo, and triggered an anti-MHC immune response from the host. RESULTS The cellular compartment of the porcine ear was completely removed except for a few cartilaginous cells, leaving behind an acellular ECM scaffold; this scaffold retained its complex 3D architecture and biochemical components. The framework of the vascular tree was intact at all hierarchical levels and sustained a physiologically relevant blood pressure when implanted in vivo. Scaffolds were biocompatible in vitro and in vivo, and elicited no MHC immune response from the host. Cells from different types remained viable and could even differentiate at the scale of a whole-ear scaffold. CONCLUSIONS Acellular scaffolds were produced from the porcine ear, and may be a valuable platform to treat facial deformities using regenerative medicine approaches.
Collapse
|
7
|
Abstract
OBJECTIVE During the last decade, face allotransplantation has been shown to be a revolutionary reconstructive procedure for severe disfigurements. However, offer to patients remains limited due to lifelong immunosuppression. To move forward in the field, a new pathway in tissue engineering is proposed. BACKGROUND Our previously reported technique of matrix production of a porcine auricular subunit graft has been translated to a human face model. METHODS 5 partial and 1 total face grafts were procured from human fresh cadavers. After arterial cannulation, the specimens were perfused using a combined detergent/polar solvent decellularization protocol. Preservation of vascular patency was assessed by imaging, cell and antigen removal by DNA quantification and histology. The main extracellular matrix proteins and associated cytokines were evaluated. Lip scaffolds were cultivated with dermal, muscle progenitor and endothelial cells, either on discs or in a bioreactor. RESULTS Decellularization was successful in all facial grafts within 12 days revealing acellular scaffolds with full preservation of innate morphology. Imaging demonstrated a preservation of the entire vascular tree patency. Removal of cells and antigens was confirmed by reduction of DNA and antigen markers negativation. Microscopic evaluation revealed preservation of tissue structures as well as of major proteins. Seeded cells were viable and well distributed within all scaffolds. CONCLUSIONS Complex acellular facial scaffolds were obtained, preserving simultaneously a cell-friendly extracellular matrix and a perfusable vascular tree. This step will enable further engineering of postmortem facial grafts, thereby offering new perspectives in composite tissue allotransplantation.
Collapse
|