Abdelrahman H, El-Menyar A, Peralta R, Al-Thani H. Application of indocyanine green in surgery: A review of current evidence and implementation in trauma patients.
World J Gastrointest Surg 2023;
15:757-775. [PMID:
37342859 PMCID:
PMC10277941 DOI:
10.4240/wjgs.v15.i5.757]
[Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/26/2023] Open
Abstract
Background: Modern surgical medicine strives to manage trauma while improving outcomes using functional imaging. Identification of viable tissues is crucial for the surgical management of polytrauma and burn patients presenting with soft tissue and hollow viscus injuries. Bowel anastomosis after trauma-related resection is associated with a high rate of leakage. The ability of the surgeon’s bare eye to determine bowel viability remains limited, and the need for a more standardized objective assessment has not yet been fulfilled. Hence, there is a need for more precise diagnostic tools to enhance surgical evaluation and visualization to aid early diagnosis and timely management to minimize trauma-associated complications. Indocyanine green (ICG) coupled with fluorescence angiography is a potential solution for this problem. ICG is a fluorescent dye that responds to near-infrared irradiation. Methods: We conducted a narrative review to address the utility of ICG in the surgical management of patients with trauma as well as elective surgery. Discussion: ICG has many applications in different medical fields and has recently become an important clinical indicator for surgical guidance. However, there is a paucity of information regarding the use of this technology to treat traumas. Recently, angiography with ICG has been introduced in clinical practice to visualize and quantify organ perfusion under several conditions, leading to fewer cases of anastomotic insufficiency. This has great potential to bridge this gap and enhance the clinical outcomes of surgery and patient safety. However, there is no consensus on the ideal dose, time, and manner of administration nor the indications that ICG provides a genuine advantage through greater safety in trauma surgical settings. Conclusions: There is a scarcity of publications describing the use of ICG in trauma patients as a potentially useful strategy to facilitate intraoperative decisions and to limit the extent of surgical resection. This review will improve our understanding of the utility of intraoperative ICG fluorescence in guiding and assisting trauma surgeons to deal with the intraoperative challenges and thus improve the patients’ operative care and safety in the field of trauma surgery.
Collapse