1
|
Rius-Rocabert S, Arranz-Herrero J, Fernández-Valdés A, Marciello M, Moreno S, Llinares-Pinel F, Presa J, Hernandez-Alcoceba R, López-Píriz R, Torrecillas R, García A, Brun A, Filice M, Moya JS, Cabal B, Nistal-Villan E. Broad virus inactivation using inorganic micro/nano-particulate materials. Mater Today Bio 2022; 13:100191. [PMID: 35024597 PMCID: PMC8733340 DOI: 10.1016/j.mtbio.2021.100191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Inorganic materials can provide a set of tools to decontaminate solid, liquid or air containing viral particles. The use of disinfectants can be limited or not practical in scenarios where continuous cleaning is not feasible. Physicochemical differences between viruses raise the need for effective formulations for all kind of viruses. In the present work we describe two types of antimicrobial inorganic materials: i) a novel soda-lime glass (G3), and ii) kaolin containing metals nanoparticles (Ag or CuO), as materials to disable virus infectivity. Strong antiviral properties can be observed in G3 glass, and kaolin-containing nanoparticle materials showing a reduction of viral infectivity close to 99%. in the first 10 min of contact of vesicular stomatitis virus (VSV). A potent virucidal activity is also present in G3 and kaolin containing Ag or CuO nanoparticles against all kinds of viruses tested, reducing more than 99% the amount of HSV-1, Adenovirus, VSV, Influenza virus and SARS-CoV-2 exposed to them. Virucidal properties could be explained by a direct interaction of materials with viruses as well as inactivation by the presence of virucidal elements in the material lixiviates. Kaolin-based materials guarantee a controlled release of active nanoparticles with antiviral activity. Current coronavirus crisis highlights the need for new strategies to remove viruses from contaminated areas. We propose these low-cost inorganic materials as useful disinfecting antivirals in the actual or future pandemic threats.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain.,CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Javier Arranz-Herrero
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Adolfo Fernández-Valdés
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Francisco Llinares-Pinel
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | | | - Rubén Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA, Navarra Institute of Health Research, Av. Pio XII 55, 31008, Pamplona, Navarra, Spain
| | - Roberto López-Píriz
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Ramón Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Antonia García
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - José S Moya
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Belen Cabal
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Avda de la Vega 4-6, El Entrego, 33940, Spain
| | - Estanislao Nistal-Villan
- Microbiology Section, Dpto. CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668, Madrid, Spain.,Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668, Madrid, Spain
| |
Collapse
|
2
|
Braidwood L, Learmonth K, Graham A, Conner J. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716) in hepatocellular carcinoma xenograft models. J Hepatocell Carcinoma 2014; 1:149-61. [PMID: 27508184 PMCID: PMC4918275 DOI: 10.2147/jhc.s71019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oncolytic herpes simplex virus (HSV1716), lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lynne Braidwood
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Kirsty Learmonth
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Alex Graham
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Joe Conner
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| |
Collapse
|
3
|
Bour G, Martel F, Goffin L, Bayle B, Gangloff J, Aprahamian M, Marescaux J, Egly JM. Design and development of a robotized system coupled to µCT imaging for intratumoral drug evaluation in a HCC mouse model. PLoS One 2014; 9:e106675. [PMID: 25203629 PMCID: PMC4159281 DOI: 10.1371/journal.pone.0106675] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer related deaths worldwide. One of the main challenges in cancer treatment is drug delivery to target cancer cells specifically. Preclinical evaluation of intratumoral drugs in orthotopic liver cancer mouse models is difficult, as percutaneous injection hardly can be precisely performed manually. In the present study we have characterized a hepatoma model developing a single tumor nodule by implantation of Hep55.1C cells in the liver of syngeneic C57BL/6J mice. Tumor evolution was followed up by µCT imaging, and at the histological and molecular levels. This orthotopic, poorly differentiated mouse HCC model expressing fibrosis, inflammation and cancer markers was used to assess the efficacy of drugs. We took advantage of the high precision of a previously developed robotized system for automated, image-guided intratumoral needle insertion, to administer every week in the tumor of the Hep55.1C mouse model. A significant tumor growth inhibition was observed using our robotized system, whereas manual intraperitoneal administration had no effect, by comparison to untreated control mice.
Collapse
Affiliation(s)
- Gaétan Bour
- Institut de Recherche contre les Cancers de l′Appareil Digestif (IRCAD), Strasbourg, France
| | - Fernand Martel
- IGBMC, Department of Functional Genomics and Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch, C. U. Strasbourg, Strasbourg, France
| | - Laurent Goffin
- ICube laboratory UMR, CNRS 7357, University of Strasbourg, Strasbourg, France
| | - Bernard Bayle
- ICube laboratory UMR, CNRS 7357, University of Strasbourg, Strasbourg, France
| | - Jacques Gangloff
- ICube laboratory UMR, CNRS 7357, University of Strasbourg, Strasbourg, France
| | - Marc Aprahamian
- Institut de Recherche contre les Cancers de l′Appareil Digestif (IRCAD), Strasbourg, France
| | - Jacques Marescaux
- Institut de Recherche contre les Cancers de l′Appareil Digestif (IRCAD), Strasbourg, France
| | - Jean-Marc Egly
- Institut de Recherche contre les Cancers de l′Appareil Digestif (IRCAD), Strasbourg, France
- IGBMC, Department of Functional Genomics and Cancer, CNRS/INSERM/Université de Strasbourg, BP 163, Illkirch, C. U. Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Argnani R, Marconi P, Volpi I, Bolanos E, Carro E, Ried C, Santamaria E, Pourchet A, Epstein AL, Brocker T, Corrales FJ, Manservigi R, Goicoechea I, Foschini M, Hernandez-Alcoceba R. Characterization of herpes simplex virus 1 strains as platforms for the development of oncolytic viruses against liver cancer. Liver Int 2011; 31:1542-53. [PMID: 22093330 DOI: 10.1111/j.1478-3231.2011.02628.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/25/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Diverse oncolytic viruses (OV) are being designed for the treatment of cancer. The characteristics of the parental virus strains may influence the properties of these agents. AIMS To characterize two herpes simplex virus 1 strains (HSV-1 17syn(+) and HFEM) as platforms for virotherapy against liver cancer. METHODS The luciferase reporter gene was introduced in the intergenic region 20 locus of both HSV-1 strains, giving rise to the Cgal-Luc and H6-Luc viruses. Their properties were studied in hepatocellular carcinoma (HCC) cells in vitro. Biodistribution was monitored by bioluminescence imaging (BLI) in athymic mice and immune-competent Balb/c mice. Immunogenicity was studied by MHC-tetramer staining, in vivo killing assays and determination of specific antibody production. Intratumoural transgene expression and oncolytic effect were studied in HuH-7 xenografts. RESULTS The H6-Luc virus displayed a syncytial phenotype and showed higher cytolytic effect on some HCC cells. Upon intravenous or intrahepatic injection in mice, both viruses showed a transient transduction of the liver with rapid relocalization of bioluminescence in adrenal glands, spinal cord, uterus and ovaries. No significant differences were observed in the immunogenicity of these viruses. Local intratumoural administration caused progressive increase in transgene expression during the first 5 days and persisted for at least 2 weeks. H6-Luc achieved faster amplification of transgene expression and stronger inhibition of tumour growth than Cgal-Luc, although toxicity of these non-attenuated viruses should be reduced to obtain a therapeutic effect. CONCLUSIONS The syncytial H6-Luc virus has a strong oncolytic potential on human HCC xenografts and could be the basis for potent OV.
Collapse
Affiliation(s)
- Rafaela Argnani
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sánchez-Quiles V, Mora MI, Segura V, Greco A, Epstein AL, Foschini MG, Dayon L, Sanchez JC, Prieto J, Corrales FJ, Santamaría E. HSV-1 Cgal+ infection promotes quaking RNA binding protein production and induces nuclear-cytoplasmic shuttling of quaking I-5 isoform in human hepatoma cells. Mol Cell Proteomics 2011; 10:M111.009126. [PMID: 21467216 DOI: 10.1074/mcp.m111.009126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpesvirus type 1 (HSV-1) based oncolytic vectors arise as a promising therapeutic alternative for neoplastic diseases including hepatocellular carcinoma. However, the mechanisms mediating the host cell response to such treatments are not completely known. It is well established that HSV-1 infection induces functional and structural alterations in the nucleus of the host cell. In the present work, we have used gel-based and shotgun proteomic strategies to elucidate the signaling pathways impaired in the nucleus of human hepatoma cells (Huh7) upon HSV-1 Cgal(+) infection. Both approaches allowed the identification of differential proteins suggesting impairment of cell functions involved in many aspects of host-virus interaction such as transcription regulation, mRNA processing, and mRNA splicing. Based on our proteomic data and additional functional studies, cellular protein quaking content (QKI) increases 4 hours postinfection (hpi), when viral immediate-early genes such as ICP4 and ICP27 could be also detected. Depletion of QKI expression by small interfering RNA results in reduction of viral immediate-early protein levels, subsequent decrease in early and late viral protein content, and a reduction in the viral yield indicating that QKI directly interferes with viral replication. In particular, HSV-1 Cgal(+) induces a transient increase in quaking I-5 isoform (QKI-5) levels, in parallel with an enhancement of p27(Kip1) protein content. Moreover, immunofluorescence microscopy showed an early nuclear redistribution of QKI-5, shuttling from the nucleus to the cytosol and colocalizing with nectin-1 in cell to cell contact regions at 16-24 hpi. This evidence sheds new light on mechanisms mediating hepatoma cell response to HSV-1 vectors highlighting QKI as a central molecular mediator.
Collapse
Affiliation(s)
- Virginia Sánchez-Quiles
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
7
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|