1
|
Chakraborty S, Kannihalli A, Mohanty A, Ray S. The Promises of Proteomics and Metabolomics for Unravelling the Mechanism and Side Effect Landscape of Beta-Adrenoceptor Antagonists in Cardiovascular Therapeutics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:87-92. [PMID: 36854142 DOI: 10.1089/omi.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cardiovascular medicine witnessed notable advances for the past decade. Multiomics research offers a new lens for precision/personalized medicine for existing and emerging drugs used in the cardiovascular clinic. Beta-blockers are vital in treating hypertension and chronic heart failure. However, clinical use of beta-blockers is also associated with side effects and person-to-person variations in their pharmacokinetics and pharmacodynamics. A comprehensive understanding of the mechanisms that underpin the side effect landscape of beta-blockers is imperative to optimize their therapeutic value. In addition, current research emphasizes the circadian clock's vital roles in regulating pharmacological parameters. Administration of the beta-blockers at specific dosing times could potentially improve their effectiveness and reduce their toxic effects. The rapid development of mass spectrometry technologies with chemical proteomics and thermal proteome profiling methods has also substantially advanced our understanding of underlying side effects mechanisms by unbiased deconvolution of drug targets and off-targets. Metabolomics is steadily demonstrating its utility for conducting mechanistic and toxicological analyses of pharmacological compounds. This article discusses the promises of cutting-edge proteomics and metabolomics approaches to investigate the molecular targets, mechanism of action, adverse effects, and dosing time dependency of beta-blockers.
Collapse
Affiliation(s)
| | - Arpita Kannihalli
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Abhishek Mohanty
- Cardiology Department, Continental Hospitals, Nanakaramguda, India
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
2
|
Smith RW, Moccia RD, Seymour CB, Mothersill CE. Irradiation of rainbow trout at early life stages results in a proteomic legacy in adult gills. Part A; proteomic responses in the irradiated fish and in non-irradiated bystander fish. ENVIRONMENTAL RESEARCH 2018; 163:297-306. [PMID: 29463416 DOI: 10.1016/j.envres.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Exposure to a single 0.5 Gy X-ray dose of eggs at 48 h after fertilisation (48 h egg), eyed eggs, yolk sac larvae (YSL) and first feeders induces a legacy effect in adult rainbow trout. This includes the transmission of a bystander effect to non-irradiated adult trout which had swam with the irradiated fish. The aim of this study was to investigate this legacy by analysing the gill proteome of these irradiated and bystander fish. Irradiation at all of the early life stages resulted in changes to proteins which play a key role in development but are also known to be anti-tumorigenic and anti-oxidant: upregulation of haemoglobin subunit beta (48 h egg), haemoglobin, serum albumin 1 precursor (eyed eggs), clathrin heavy chain 1 isoform X10 (eyed eggs and first feeders), and actin-related protein 2/3 complex subunit 4 (first feeders), downregulation of pyruvate dehydrogenase, histone 1 (48 h egg), triosephosphate isomerase (TPI), collagen alpha-1(1) chain like proteins (YSL), pyruvate kinase PKM-like protein (YSL and first feeders), ubiquitin-40S ribosomal proteins S27 and eukaryotic translation initiation factor 4 A isoform 1B (first feeders). However irradiation of YSL and first feeders (post hatching early life stages) also induced proteomic changes which have a complex relationship with tumorigenesis or cancer progression; downregulation of alpha-1-antiprotease-like protein precursor, vigilin isoform X2 and nucleoside diphosphate kinase (YSL) and upregulation of hyperosmotic glycine rich protein (first feeders). In bystander fish some proteomic changes were similar to those induced by irradiation: upregulation of haemoglobin subunit beta (48 h egg), haemoglobin (eyed eggs), actin-related protein 2/3 complex subunit 4, hyperosmotic glycine rich protein (first feeders), and downregulation of alpha-1-antiprotease-like protein, vigilin isoform X2, nucleoside diphosphate kinase (YSL), pyruvate kinase PKM-like protein and ubiquitin-40S ribosomal protein S27a-like (first feeders). Other proteomic changes were unique to bystander fish; downregulation of TPI, ubiquitin-40S ribosomal protein S2 (eyed egg), cofilin-2, cold-inducible RNA-binding protein B-like isoform X3 (YSL) and superoxide dismutase (first feeder), and upregulation of haemoglobin subunit alpha, collagen 1a1 precursor, apolipoprotein A-1-1 and A-1-2 precursor (first feeders). These bystander effect proteomic changes have been shown to be overwhelmingly anti-tumorigenic or protective of the fish gill.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Animal Biosciences, University of Guelph, Guelph Ontario Canada; Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada.
| | - Richard D Moccia
- Department of Animal Biosciences, University of Guelph, Guelph Ontario Canada
| | - Colin B Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada
| | - Carmel E Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada
| |
Collapse
|
3
|
Xin Y, Wang D, Huang M, Yu J, Fang L, Xiao S. Proteome analysis of differential protein expression in porcine alveolar macrophages regulated by porcine reproductive and respiratory syndrome virus nsp1β protein. Virus Genes 2018; 54:385-396. [PMID: 29508239 DOI: 10.1007/s11262-018-1547-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/01/2018] [Indexed: 11/27/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an acute infectious disease agent in swine, causes enormous economic losses to the global swine industry. PRRSV nonstructural protein 1β (nsp1β) plays a critical role in viral subgenomic mRNA synthesis and host immune regulation. However, the global changes of cellular gene expression in natural target cells regulated by the nsp1β have not yet been identified. Here, isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry were used to quantitatively identify cellular proteins in porcine alveolar macrophage (PAM) 3D4/21 cells transduced with recombinant lentivirus expressing PRRSV nsp1β that are differentially expressed compared with PAM 3D4/21 cells transduced with recombinant lentivirus expressing GFP. Of the 425 cellular proteins detected as differentially expressed, 186 were upregulated and 239 were downregulated. Based on the identities of the differentially expressed cellular proteins and the essential role of nsp1β in interferon (IFN) activation and inflammatory factor antagonism during PRRSV infection, we propose a potential mechanism in which nsp1β inhibits IFN induction and nuclear factor κB (NF-κB) signaling pathways. Our results suggest that mitochondrial antiviral signaling (MAVS) protein and translocases of outer membrane complex 70 (TOM70), involved in type I IFN induction, were downregulated, while protein phosphatase 1A (PPM1A), related to the inhibition of NF-κB pathway activation, was upregulated in nsp1β-overexpressed PAM 3D4/21 cells. These data provide valuable information for better understanding the potential biological function of nsp1β during PRRSV infection and the mechanism of virus escape from host immune surveillance of viral replication.
Collapse
Affiliation(s)
- Yinghao Xin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
| | - Meijin Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
| | - Jinjin Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China.
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Mothersill C, Smith R, Wang J, Rusin A, Fernandez-Palomo C, Fazzari J, Seymour C. Biological Entanglement-Like Effect After Communication of Fish Prior to X-Ray Exposure. Dose Response 2018; 16:1559325817750067. [PMID: 29479295 PMCID: PMC5818098 DOI: 10.1177/1559325817750067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022] Open
Abstract
The phenomenon by which irradiated organisms including cells in vitro communicate with unirradiated neighbors is well established in biology as the radiation-induced bystander effect (RIBE). Generally, the purpose of this communication is thought to be protective and adaptive, reflecting a highly conserved evolutionary mechanism enabling rapid adjustment to stressors in the environment. Stressors known to induce the effect were recently shown to include chemicals and even pathological agents. The mechanism is unknown but our group has evidence that physical signals such as biophotons acting on cellular photoreceptors may be implicated. This raises the question of whether quantum biological processes may occur as have been demonstrated in plant photosynthesis. To test this hypothesis, we decided to see whether any form of entanglement was operational in the system. Fish from 2 completely separate locations were allowed to meet for 2 hours either before or after which fish from 1 location only (group A fish) were irradiated. The results confirm RIBE signal production in both skin and gill of fish, meeting both before and after irradiation of group A fish. The proteomic analysis revealed that direct irradiation resulted in pro-tumorigenic proteomic responses in rainbow trout. However, communication from these irradiated fish, both before and after they had been exposed to a 0.5 Gy X-ray dose, resulted in largely beneficial proteomic responses in completely nonirradiated trout. The results suggest that some form of anticipation of a stressor may occur leading to a preconditioning effect or temporally displaced awareness after the fish become entangled.
Collapse
Affiliation(s)
| | | | - Jiaxi Wang
- Department of Chemistry, Mass Spectrometry Facility, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
5
|
Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases. Mediators Inflamm 2016; 2016:5628486. [PMID: 27429513 PMCID: PMC4939324 DOI: 10.1155/2016/5628486] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/25/2016] [Indexed: 01/14/2023] Open
Abstract
Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.
Collapse
|
6
|
Vortex-assisted liquid–liquid–liquid microextraction (VALLLME) technique: A new microextraction approach for direct liquid chromatography and capillary electrophoresis analysis. Talanta 2015; 143:394-401. [DOI: 10.1016/j.talanta.2015.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 01/28/2023]
|
7
|
Teoh JP, Park KM, Broskova Z, Jimenez FR, Bayoumi AS, Archer K, Su H, Johnson J, Weintraub NL, Tang Y, Kim IM. Identification of gene signatures regulated by carvedilol in mouse heart. Physiol Genomics 2015; 47:376-85. [PMID: 26152686 DOI: 10.1152/physiolgenomics.00028.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/06/2015] [Indexed: 01/14/2023] Open
Abstract
Chronic treatment with the β-blocker carvedilol has been shown to reduce established maladaptive left ventricle (LV) hypertrophy and to improve LV function in experimental heart failure. However, the detailed mechanisms by which carvedilol improves LV failure are incompletely understood. We previously showed that carvedilol is a β-arrestin-biased β1-adrenergic receptor ligand, which activates cellular pathways in the heart independent of G protein-mediated second messenger signaling. More recently, we have demonstrated by microRNA (miR) microarray analysis that carvedilol upregulates a subset of mature and pre-mature miRs, but not their primary miR transcripts in mouse hearts. Here, we next sought to identify the effects of carvedilol on LV gene expression on a genome-wide basis. Adult mice were treated with carvedilol or vehicle for 1 wk. RNA was isolated from LV tissue and hybridized for microarray analysis. Gene expression profiling analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes into pathways involved in tight junction, malaria, viral myocarditis, glycosaminoglycan biosynthesis, and arrhythmogenic right ventricular cardiomyopathy. Genes encoding proteins in the tight junction, malaria, and viral myocarditis pathways were upregulated in the LV by carvedilol, while genes encoding proteins in the glycosaminoglycan biosynthesis and arrhythmogenic right ventricular cardiomyopathy pathways were downregulated by carvedilol. These gene expression changes may reflect the molecular mechanisms that underlie the functional benefits of carvedilol therapy.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Felix R Jimenez
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Krystal Archer
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - John Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
8
|
Changes in renal tissue proteome induced by mesenteric lymph drainage in rats after hemorrhagic shock with resuscitation. Shock 2015; 42:350-5. [PMID: 24978890 DOI: 10.1097/shk.0000000000000214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kidney injury commonly occurs after hemorrhagic shock. Previous studies have shown that post-hemorrhagic shock mesenteric lymph (PHSML) return negatively affects the kidneys and may induce injury. This study investigates the effect of PHSML drainage on the proteome in renal tissue. A controlled hemorrhagic shock model was established in the shock and shock+drainage groups. After 1 h of hypotension, fluid resuscitation was implemented within 30 min. Meanwhile, PHSML was drained in the shock+drainage group. After 3 h of resuscitation, renal tissue was extracted for proteome analysis using two-dimensional fluorescence difference gel electrophoresis. Differential proteins with intensities that either increased or decreased by 1.5-fold or greater were selected for trypsin digestion and analyzed by matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry and tandem TOF/TOF mass spectrometry. Enzyme-linked immunosorbent assay was used to validate the identified partial proteins. Compared with the sham group, hnRNPC and Starp decreased in the shock group, whereas Hadha, Slc25a13, Atp5b, hnRNPC, Starp, Rps3, and actin were downregulated in the shock+drainage group. Meanwhile, Atp5b and actin decreased in the shock+drainage group relative to the shock group. The identified proteins can be classified into different categories, such as cell proliferation (hnRNPC, Strap, and Rps3), energy metabolism (Hadha, Atp5b, and Slc25a13), cell motility, and cytoskeleton (actin). Moreover, enzyme-linked immunosorbent assay measurement validated the changed levels of Atp5b and Actg2. Our findings provide a starting point for investigating the functions of differentially expressed proteins in acute kidney injury induced by hemorrhagic shock. These findings hold great potential for the development of therapeutic interventions.
Collapse
|
9
|
Wang M, Wang HH, Lakatta EG. Milk fat globule epidermal growth factor VIII signaling in arterial wall remodeling. Curr Vasc Pharmacol 2014; 11:768-76. [PMID: 22272902 DOI: 10.2174/1570161111311050014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/15/2011] [Accepted: 01/03/2012] [Indexed: 12/11/2022]
Abstract
Arterial inflammation and remodeling, important sequellae of advancing age, are linked to the pathogenesis of age-associated arterial diseases e.g. hypertension, atherosclerosis, and metabolic disorders. Recently, high-throughput proteomic screening has identified milk fat globule epidermal growth factor VIII (MFG-E8) as a novel local biomarker for aging arterial walls. Additional studies have shown that MFG-E8 is also an element of the arterial inflammatory signaling network. The transcription, translation, and signaling levels of MFG-E8 are increased in aged, atherosclerotic, hypertensive, and diabetic arterial walls in vivo as well as activated vascular smooth muscle cells (VSMC) and a subset of macrophages in vitro. In VSMC, MFG-E8 increases proliferation and invasion as well as the secretion of inflammatory molecules. In endothelial cells (EC), MFG-E8 facilitates apoptosis. In addition, MFG-E8 has been found to be an essential component of the endothelial-derived microparticles that relay biosignals and modulate arterial wall phenotypes. This review mainly focuses upon the landscape of MFG-E8 expression and signaling in adverse arterial remodeling. Recent discoveries have suggested that MFG-E8 associated interventions are novel approaches for the retardation of the enhanced rates of VSMC proliferation and EC apoptosis that accompany arterial wall inflammation and remodeling during aging and age-associated arterial disease.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging-National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
10
|
Fu Z, Wang M, Everett A, Lakatta E, Van Eyk J. Can proteomics yield insight into aging aorta? Proteomics Clin Appl 2013; 7:477-89. [PMID: 23788441 DOI: 10.1002/prca.201200138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/16/2022]
Abstract
The aging aorta exhibits structural and physiological changes that are reflected in the proteome of its component cells types. The advance in proteomic technologies has made it possible to analyze the quantity of proteins associated with the natural history of aortic aging. These alterations reflect the molecular and cellular mechanisms of aging and could provide an opportunity to predict vascular health. This paper focuses on whether discoveries stemming from the application of proteomic approaches of the intact aging aorta or vascular smooth muscle cells can provide useful insights. Although there have been limited studies to date, a number of interesting proteins have been identified that are closely associated with aging in the rat aorta. Such proteins, including milk fat globule-EGF factor 8, matrix metalloproteinase type-2, and vitronectin, could be used as indicators of vascular health, or even explored as therapeutic targets for aging-related vascular diseases.
Collapse
Affiliation(s)
- Zongming Fu
- Department of Pediatrics, The Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
11
|
Evaluation of carbon nanotubes as chiral selectors for continuous-flow enantiomeric separation of carvedilol with fluorescent detection. J Pharm Biomed Anal 2012; 70:631-5. [DOI: 10.1016/j.jpba.2012.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/06/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022]
|
12
|
Wang M, Fu Z, Wu J, Zhang J, Jiang L, Khazan B, Telljohann R, Zhao M, Krug AW, Pikilidou M, Monticone RE, Wersto R, Van Eyk J, Lakatta EG. MFG-E8 activates proliferation of vascular smooth muscle cells via integrin signaling. Aging Cell 2012; 11:500-8. [PMID: 22385834 PMCID: PMC3350574 DOI: 10.1111/j.1474-9726.2012.00813.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An accumulation of milk fat globule EGF-8 protein (MFG-E8) occurs within the context of arterial wall inflammatory remodeling during aging, hypertension, diabetes mellitus, or atherosclerosis. MFG-E8 induces VSMC invasion, but whether it affects VSMC proliferation, a salient feature of arterial inflammation, is unknown. Here, we show that in the rat arterial wall in vivo, PCNA and Ki67, markers of cell cycle activation, increase with age between 8 and 30 months. In fresh and early passage VSMC isolated from old aortae, an increase in CDK4 and PCNA, an increase in the acceleration of cell cycle S and G2 phases, decrease in the G1/G0 phase, and an increase in PDGF and its receptors confer elevated proliferative capacity, compared to young VSMC. Increased coexpression and physical interaction of MFG-E8 and integrin αvβ5 occur with aging in both the rat aortic wall in vivo and in VSMC in vitro. In young VSMC in vitro, MFG-E8 added exogenously, or overexpressed endogenously, triggers phosphorylation of ERK1/2, augmented levels of PCNA and CDK4, increased BrdU incorporation, and promotes proliferation, via αvβ5 integrins. MFG-E8 silencing, or its receptor inhibition, or the blockade of ERK1/2 phosphorylation in these cells reduces PCNA and CDK4 levels and decelerates the cell cycle S phase, conferring a reduction in proliferative capacity. Collectively, these results indicate that MFG-E8 in a dose-dependent manner coordinates the expression of cell cycle molecules and facilitates VSMC proliferation via integrin/ERK1/2 signaling. Thus, an increase in MFG-E8 signaling is a mechanism of the age-associated increase in aortic VSMC proliferation.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Cell Growth Processes/physiology
- Immunohistochemistry
- Integrins/metabolism
- MAP Kinase Signaling System
- Male
- Milk Proteins/biosynthesis
- Milk Proteins/genetics
- Milk Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation
- Platelet-Derived Growth Factor/metabolism
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging-National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang M, Bai J, Chen WN, Ching CB. Metabolomic profiling of cellular responses to carvedilol enantiomers in vascular smooth muscle cells. PLoS One 2010; 5:e15441. [PMID: 21124793 PMCID: PMC2991354 DOI: 10.1371/journal.pone.0015441] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
Carvedilol is a non-selective β-blocker indicated in the treatment of hypertension and heart failure. Although the differential pharmacological effects of individual Carvedilol enantiomer is supported by preceding studies, the cellular response to each enantiomer is not well understood. Here we report the use of GC-MS metabolomic profiling to study the effects of Carvedilol enantiomers on vascular smooth muscle cells (A7r5) and to shed new light on molecular events underlying Carvedilol treatment. The metabolic analysis revealed alternations in the levels of 8 intracellular metabolites and 5 secreted metabolites in A7r5 cells incubated separately with S- and R-Carvedilol. Principal component analysis of the metabolite data demonstrated the characteristic metabolic signatures in S- and R-Carvedilol-treated cells. A panel of metabolites, including L-serine, L-threonine, 5-oxoproline, myristic acid, palmitic acid and inositol are closely correlated to the vascular smooth muscle contraction. Our findings reveal the differentiating metabolites for A7r5 cells incubated with individual enantiomer of Carvedilol, which opens new perspectives to employ metabolic profiling platform to study chiral drug-cell interactions and aid their incorporation into future improvement of β-blocker therapy.
Collapse
Affiliation(s)
- Mingxuan Wang
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jing Bai
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| | - Chi Bun Ching
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|