1
|
Lee J, Cho BC, Park JS. Transcriptomic analysis of brine shrimp Artemia franciscana across a wide range of salinities. Mar Genomics 2021; 61:100919. [PMID: 34965493 DOI: 10.1016/j.margen.2021.100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
Brine shrimp Artemia franciscana, a commercially important species, can thrive in a wide range of salinities and is commonly found in hypersaline lakes and solar salterns. Transcriptome analysis can enhance the understanding of the adaptative mechanisms of brine shrimp in aquaculture. RNA sequencing (RNAseq) data was generated from A. franciscana adults that were salt-adapted for 2-4 weeks at five salinities: 35, 50, 100, 150, and 230 psu. Long-read isoform sequencing (IsoSeq) data was used to construct a high-quality transcriptome assembly. Also, the gene expression patterns in A. franciscana adults were examined. Notably, the transcriptional response of A. franciscana's acclimation to intermediate salinities (50-150 psu) displayed frequently and differentially U-shaped or inverted U-shaped expression patterns. In addition, the types of genes showing two nonmonotonic expression patterns were distinct from each other. The coordinated shifts in gene expression suggest different homeostatic strategies of A. franciscana at specific salinities; such strategies may enhance population fitness at extreme salinities. Our study should promote a scientific concept for the gene expression patterns of A. franciscana along a broad salinity gradient, and a variety of salinity and prey should be monitored for testing the gene expression pattern of this important aquaculture species.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Cheol Cho
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea; Saemangeum Environmental Research Center, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jong Soo Park
- Department of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Patrick AT, He W, Madu J, Sripathi SR, Choi S, Lee K, Samson FP, Powell FL, Bartoli M, Jee D, Gutsaeva DR, Jahng WJ. Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome. J Diabetes Metab Disord 2021; 19:829-848. [PMID: 33520806 DOI: 10.1007/s40200-020-00570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Purpose The current study aims to determine the molecular mechanisms of diabetic retinopathy (DR) using the protein-protein interactome and metabolome map. We examined the protein network of novel biomarkers of DR for direct (physical) and indirect (functional) interactions using clinical target proteins in different models. Methods We used proteomic tools including 2-dimensional gel electrophoresis, mass spectrometry analysis, and database search for biomarker identification using in vivo murine and human model of diabetic retinopathy and in vitro model of oxidative stress. For the protein interactome and metabolome mapping, various bioinformatic tools that include STRING and OmicsNet were used. Results We uncovered new diabetic biomarkers including prohibitin (PHB), dynamin 1, microtubule-actin crosslinking factor 1, Toll-like receptor (TLR 7), complement activation, as well as hypothetical proteins that include a disintegrin and metalloproteinase (ADAM18), vimentin III, and calcium-binding C2 domain-containing phospholipid-binding switch (CAC2PBS) using a proteomic approach. Proteome networks of protein interactions with diabetic biomarkers were established using known DR-related proteome data. DR metabolites were interconnected to establish the metabolome map. Our results showed that mitochondrial protein interactions were changed during hyperglycemic conditions in the streptozotocin-treated murine model and diabetic human tissue. Conclusions Our interactome mapping suggests that mitochondrial dysfunction could be tightly linked to various phases of DR pathogenesis including altered visual cycle, cytoskeletal remodeling, altered lipid concentration, inflammation, PHB depletion, tubulin phosphorylation, and altered energy metabolism. The protein-metabolite interactions in the current network demonstrate the etiology of retinal degeneration and suggest the potential therapeutic approach to treat DR.
Collapse
Affiliation(s)
- Ambrose Teru Patrick
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI USA
| | - Joshua Madu
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Srinivas R Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Seulggie Choi
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Kook Lee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Faith Pwaniyibo Samson
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA USA
| | - Manuela Bartoli
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Donghyun Jee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Diana R Gutsaeva
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Wan Jin Jahng
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
3
|
Samson F, He W, Sripathi SR, Patrick AT, Madu J, Chung H, Frost MC, Jee D, Gutsaeva DR, Jahng WJ. Dual Switch Mechanism of Erythropoietin as an Antiapoptotic and Pro-Angiogenic Determinant in the Retina. ACS OMEGA 2020; 5:21113-21126. [PMID: 32875248 PMCID: PMC7450639 DOI: 10.1021/acsomega.0c02763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 05/07/2023]
Abstract
Constant or intense light degenerates the retina and retinal pigment epithelial cells. Light generates reactive oxygen species and nitric oxide leading to initial reactions of retinal degeneration. Apoptosis is the primary mechanism of abnormal death of photoreceptors, retinal ganglion cells, or retinal pigment epithelium (RPE) in degenerative retinal diseases, including diabetic retinopathy and age-related macular degeneration. The current study evaluated the function of erythropoietin (EPO) on angiogenesis and apoptosis in the retina and RPE under oxidative stress. We determined the pro-angiogenic and antiapoptotic mechanism of EPO under stress conditions using a conditional EPO knockdown model using siRNA, EPO addition, proteomics, immunocytochemistry, and bioinformatic analysis. Our studies verified that EPO protected retinal cells from light-, hypoxia-, hyperoxia-, and hydrogen peroxide-induced apoptosis through caspase inhibition, whereas up-regulated angiogenic reactions through vascular endothelial growth factor (VEGF) and angiotensin pathway. We demonstrated that the EPO expression in the retina and subsequent serine/threonine/tyrosine kinase phosphorylations might be linked to oxidative stress response tightly to determining angiogenesis and apoptosis. Neuroprotective roles of EPO may involve the balance between antiapoptotic and pro-angiogenic signaling molecules, including BCL-xL, c-FOS, caspase-3, nitric oxide, angiotensin, and VEGF receptor. Our data indicate a new therapeutic application of EPO toward retinal degeneration based on the dual roles in apoptosis and angiogenesis at the molecular level under oxidative stress.
Collapse
Affiliation(s)
| | - Weilue He
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton 49931, United States
| | - Srinivas R. Sripathi
- Department
of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ambrose Teru Patrick
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Joshua Madu
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Hyewon Chung
- Department
of Ophthalmology, School of Medicine, Konkuk
University, Seoul 05030, Korea
| | - Megan C. Frost
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton 49931, United States
| | - Donghyun Jee
- Division
of Vitreous and Retina, Department of Ophthalmology, St. Vincent’s
Hospital, College of Medicine, The Catholic
University of Korea, Suwon 16247, Korea
| | - Diana R. Gutsaeva
- Department
of Ophthalmology, Augusta University, Augusta, Georgia 30912, United States
| | - Wan Jin Jahng
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| |
Collapse
|
4
|
Beranova-Giorgianni S, Giorgianni F. Proteomics of Human Retinal Pigment Epithelium (RPE) Cells. Proteomes 2018; 6:proteomes6020022. [PMID: 29762536 PMCID: PMC6027133 DOI: 10.3390/proteomes6020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal pigment epithelium (RPE) are specialized, multifunctional cells in the retina that form a monolayer of cuboidal, polarized cells adjoining the photoreceptor cells. The RPE are a critical component of the blood-retinal barrier, and they play essential functional roles for maintenance of retinal homeostasis and for support and health of photoreceptors. Age-dependent, progressive dysfunction and death of RPE cells and the resultant loss of photoreceptors contribute significantly to the development and progression of age-related macular degeneration (AMD) and other retinal degenerative diseases. Several different RPE cell culture models have been developed and utilized extensively as surrogates for cellular and molecular examinations of the RPE, and a large body of knowledge on RPE function in normal and pathological scenarios has been amassed in studies with cultured RPE. Proteomics has been an integral part of research efforts aimed to advance our understanding of RPE cell biology in health and disease. This review focuses on applications of proteomics to in vitro qualitative and quantitative investigation of human RPE cell culture models. The disease context discussed focuses on AMD.
Collapse
Affiliation(s)
- Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
5
|
Hongisto H, Jylhä A, Nättinen J, Rieck J, Ilmarinen T, Veréb Z, Aapola U, Beuerman R, Petrovski G, Uusitalo H, Skottman H. Comparative proteomic analysis of human embryonic stem cell-derived and primary human retinal pigment epithelium. Sci Rep 2017; 7:6016. [PMID: 28729539 PMCID: PMC5519552 DOI: 10.1038/s41598-017-06233-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/12/2017] [Indexed: 01/28/2023] Open
Abstract
Human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) provide an unlimited cell source for retinal cell replacement therapies. Clinical trials using hESC-RPE to treat diseases such as age-related macular degeneration (AMD) are currently underway. Human ESC-RPE cells have been thoroughly characterized at the gene level but their protein expression profile has not been studied at larger scale. In this study, proteomic analysis was used to compare hESC-RPE cells differentiated from two independent hESC lines, to primary human RPE (hRPE) using Isobaric tags for relative quantitation (iTRAQ). 1041 common proteins were present in both hESC-RPE cells and native hRPE with majority of the proteins similarly regulated. The hESC-RPE proteome reflected that of normal hRPE with a large number of metabolic, mitochondrial, cytoskeletal, and transport proteins expressed. No signs of increased stress, apoptosis, immune response, proliferation, or retinal degeneration related changes were noted in hESC-RPE, while important RPE specific proteins involved in key RPE functions such as visual cycle and phagocytosis, could be detected in the hESC-RPE. Overall, the results indicated that the proteome of the hESC-RPE cells closely resembled that of their native counterparts.
Collapse
Affiliation(s)
- Heidi Hongisto
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| | - Antti Jylhä
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Janika Nättinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Jochen Rieck
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tanja Ilmarinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ulla Aapola
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Roger Beuerman
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Singapore Eye Research Institute and Duke-NUS School of Medicine, Singapore, Singapore
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hannu Uusitalo
- Department of Ophthalmology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Tampere University Hospital Eye Center, University of Tampere, Tampere, Finland
| | - Heli Skottman
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
6
|
Abstract
Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration. Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde versus anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases.
Collapse
|
7
|
Joshua M, Okere C, Sylvester O, Yahaya M, Precious O, Dluya T, Um JY, Neksumi M, Boyd J, Vincent-Tyndall J, Choo DW, Gutsaeva DR, Jahng WJ. Disruption of Angiogenesis by Anthocyanin-Rich Extracts of Hibiscus sabdariffa. ACTA ACUST UNITED AC 2017; 8:299-307. [PMID: 28459020 DOI: 10.14299/ijser.2017.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abnormal vessel formations contribute to the progression of specific angiogenic diseases including age-related macular degeneration. Adequate vessel growth and maintenance represent the coordinated process of endothelial cell proliferation, matrix remodeling, and differentiation. However, the molecular mechanism of the proper balance between angiogenic activators and inhibitors remains elusive. In addition, quantitative analysis of vessel formation has been challenging due to complex angiogenic morphology. We hypothesized that conjugated double bond containing-natural products, including anthocyanin extracts from Hibiscus sabdariffa, may control the proper angiogenesis. The current study was designed to determine whether natural molecules from African plant library modulate angiogenesis. Further, we questioned how the proper balance of anti- or pro-angiogenic signaling can be obtained in the vascular microenvironment by treating anthocyanin or fatty acids using chick chorioallantoic membrane angiogenesis model in ovo. The angiogenic morphology was analyzed systematically by measuring twenty one angiogenic indexes using Angiogenic Analyzer software. Chick chorioallantoic model demonstrated that anthocyanin-rich extracts inhibited angiogenesis in time- and concentration-dependent manner. Molecular modeling analysis proposed that hibiscetin as a component in Hibiscus may bind to the active site of vascular endothelial growth factor receptor 2 (VEGFR2) with ΔG= -8.42 kcal/mol of binding energy. Our results provided the evidence that anthocyanin is an angiogenic modulator that can be used to treat uncontrolled neovascular-related diseases, including age-related macular degeneration.
Collapse
Affiliation(s)
- Madu Joshua
- Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Christiana Okere
- Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| | | | - Muhammad Yahaya
- Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Omale Precious
- Industrial Chemistry, Modibbo Adama University of Technology Yola, Nigeria
| | - Thagriki Dluya
- Biochemistry, Modibbo Adama University of Technology Yola, Nigeria
| | - Ji-Yeon Um
- Optometry, Seoul National University of Science and Technology, Seoul, Korea
| | - Musa Neksumi
- Chemistry, Modibbo Adama University of Technology Yola, Nigeria
| | - Jessica Boyd
- Natural and Environmental Sciences, American University of Nigeria, Yola, Nigeria
| | | | - Dong-Won Choo
- Bioinformatics, Korea Polytechnic Institute, Seongnam, Korea
| | | | - Wan Jin Jahng
- Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
8
|
Sripathi SR, Sylvester O, He W, Moser T, Um JY, Lamoke F, Ramakrishna W, Bernstein PS, Bartoli M, Jahng WJ. Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium. Protein J 2016; 35:1-16. [PMID: 26661103 DOI: 10.1007/s10930-015-9641-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.
Collapse
Affiliation(s)
- Srinivas R Sripathi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA.,Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - O'Donnell Sylvester
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Weilue He
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Trevor Moser
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ji-Yeon Um
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Folami Lamoke
- Department of Ophthalmology, Georgia Regents University, Augusta, GA, 30912, USA
| | - Wusirika Ramakrishna
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Georgia Regents University, Augusta, GA, 30912, USA
| | - Wan Jin Jahng
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria.
| |
Collapse
|
9
|
Iacovelli J, Rowe GC, Khadka A, Diaz-Aguilar D, Spencer C, Arany Z, Saint-Geniez M. PGC-1α Induces Human RPE Oxidative Metabolism and Antioxidant Capacity. Invest Ophthalmol Vis Sci 2016; 57:1038-51. [PMID: 26962700 PMCID: PMC4788093 DOI: 10.1167/iovs.15-17758] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Oxidative stress and metabolic dysregulation of the RPE have been implicated in AMD; however, the molecular regulation of RPE metabolism remains unclear. The transcriptional coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) is a powerful mediator of mitochondrial function. This study examines the ability of PGC-1α to regulate RPE metabolic program and oxidative stress response. Methods Primary human fetal RPE (hfRPE) and ARPE-19 were matured in vitro using standard culture conditions. Mitochondrial mass of RPE was measured using MitoTracker staining and citrate synthase activity. Expression of PGC-1 isoforms, RPE-specific genes, oxidative metabolism proteins, and antioxidant enzymes was analyzed by quantitative PCR and Western blot. Mitochondrial respiration and fatty-acid oxidation were monitored using the Seahorse extracellular flux analyzer. Expression of PGC-1α was increased using adenoviral delivery. ARPE-19 were exposed to hydrogen peroxide to induce oxidative stress. Reactive oxygen species were measured by CM-H2DCFDA fluorescence. Cell death was analyzed by LDH release. Results Maturation of ARPE-19 and hfRPE was associated with significant increase in mitochondrial mass, expression of oxidative phosphorylation (OXPHOS) genes, and PGC-1α gene expression. Overexpression of PGC-1α increased expression of OXPHOS and fatty-acid β-oxidation genes, ultimately leading to the potent induction of mitochondrial respiration and fatty-acid oxidation. PGC-1α gain of function also strongly induced numerous antioxidant genes and, importantly, protected RPE from oxidant-mediated cell death without altering RPE functions. Conclusions This study provides important insights into the metabolic changes associated with RPE functional maturation and identifies PGC-1α as a potent driver of RPE mitochondrial function and antioxidant capacity.
Collapse
Affiliation(s)
- Jared Iacovelli
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Glenn C Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Arogya Khadka
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Daniel Diaz-Aguilar
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Carrie Spencer
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Magali Saint-Geniez
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Fronk AH, Vargis E. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations. J Tissue Eng 2016; 7:2041731416650838. [PMID: 27493715 PMCID: PMC4959307 DOI: 10.1177/2041731416650838] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/23/2016] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.
Collapse
Affiliation(s)
- Aaron H Fronk
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| |
Collapse
|
11
|
Abstract
Current proteomic technologies can effectively be used to study the proteins of the vitreous body and retina in health and disease. The use of appropriate samples, analytical platform and bioinformatic method are essential factors to consider when undertaking such studies. Certain proteins may hinder the detection and evaluation of more relevant proteins associated with pathological processes if not carefully considered, particularly in the sample preparation and data analysis stages. The utilization of more than one quantification technique and database search program to expand the level of proteome coverage and analysis will help to generate more robust and worthwhile results. This review discusses important aspects of sample processing and the use of label and label-free quantitative proteomics strategies applied to the vitreous and retina.
Collapse
|
12
|
Sun M, Lu X, Hao L, Wu T, Zhao H, Wang C. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells. Food Nutr Res 2015; 59:27830. [PMID: 26070791 PMCID: PMC4464420 DOI: 10.3402/fnr.v59.27830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 01/05/2023] Open
Abstract
Background Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L.) anthocyanin (PSPA), a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation) of human retinal pigment epithelial (RPE) cells, which perform essential functions for the visual process. Methods The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaoling Lu
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China;
| | - Lei Hao
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Huanjiao Zhao
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Chao Wang
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
13
|
Uhl P, Szober C, Amann B, Alge-Priglinger C, Ueffing M, Hauck S, Deeg C. In situ cell surface proteomics reveals differentially expressed membrane proteins in retinal pigment epithelial cells during autoimmune uveitis. J Proteomics 2014; 109:50-62. [DOI: 10.1016/j.jprot.2014.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022]
|
14
|
Wells T, Davies JR, Guschina IA, Ball DJ, Davies JS, Davies VJ, Evans BAJ, Votruba M. Opa3, a novel regulator of mitochondrial function, controls thermogenesis and abdominal fat mass in a mouse model for Costeff syndrome. Hum Mol Genet 2012; 21:4836-44. [PMID: 22869679 DOI: 10.1093/hmg/dds315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interrelationship between brown adipose tissue (BAT) and white adipose tissue (WAT) is emerging as an important factor in obesity, but the effect of impairing non-shivering thermogenesis in BAT on lipid storage in WAT remains unclear. To address this, we have characterized the metabolic phenotype of a mouse model for Costeff syndrome, in which a point mutation in the mitochondrial membrane protein Opa3 impairs mitochondrial activity. Opa3(L122P) mice displayed an 80% reduction in insulin-like growth factor 1, postnatal growth retardation and hepatic steatosis. A 90% reduction in uncoupling protein 1 (UCP1) expression in interscapular BAT was accompanied by a marked reduction in surface body temperature, with a 2.5-fold elevation in interscapular BAT mass and lipid storage. The sequestration of circulating lipid into BAT resulted in profound reductions in epididymal and retroperitoneal WAT mass, without affecting subcutaneous WAT. The histological appearance and intense mitochondrial staining in intra-abdominal WAT suggest significant 'browning', but with UCP1 expression in WAT of Opa3(L122P) mice only 62% of that in wild-type littermates, any precursor differentiation does not appear to result in thermogenically active beige adipocytes. Thus, we have identified Opa3 as a novel regulator of lipid metabolism, coupling lipid uptake with lipid processing in liver and with thermogenesis in BAT. These findings indicate that skeletal and metabolic impairment in Costeff syndrome may be more significant than previously thought and that uncoupling lipid uptake from lipid metabolism in BAT may represent a novel approach to controlling WAT mass in obesity.
Collapse
Affiliation(s)
- Timothy Wells
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sripathi SR, He W, Um JY, Moser T, Dehnbostel S, Kindt K, Goldman J, Frost MC, Jahng WJ. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress. ACTA ACUST UNITED AC 2012; 3:1167-1178. [PMID: 27974994 DOI: 10.4236/abb.2012.38143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress.
Collapse
Affiliation(s)
- Srinivas R Sripathi
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Weilue He
- Department of Biological Sciences, Michigan Technological University, Houghton, USA.,Department of Biomedical Engineering, Michigan Technological University, Houghton, USA
| | - Ji-Yeon Um
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Trevor Moser
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Stevie Dehnbostel
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Kimberly Kindt
- Department of Biological Sciences, Michigan Technological University, Houghton, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, USA
| | - Megan C Frost
- Department of Biomedical Engineering, Michigan Technological University, Houghton, USA
| | - Wan Jin Jahng
- Department of Biological Sciences, Michigan Technological University, Houghton, USA.,Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
16
|
Sripathi SR, He W, Atkinson CL, Smith JJ, Liu Z, Elledge BM, Jahng WJ. Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress. Biochemistry 2011; 50:8342-51. [PMID: 21879722 DOI: 10.1021/bi2008933] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial-nuclear communication is critical for maintaining mitochondrial activity under stress conditions. Adaptation of the mitochondrial-nuclear network to changes in the intracellular oxidation and reduction milieu is critical for the survival of retinal and retinal pigment epithelial (RPE) cells, in relation to their high oxygen demand and rapid metabolism. However, the generation and transmission of the mitochondrial signal to the nucleus remain elusive. Previously, our in vivo study revealed that prohibitin is upregulated in the retina, but downregulated in RPE cells in the aging and diabetic model. In this study, the functional role of prohibitin in the retina and RPE cells was examined using biochemical methods, including a lipid binding assay, two-dimensional gel electrophoresis, immunocytochemistry, Western blotting, and a knockdown approach. Protein depletion by siRNA characterized prohibitin as an anti-apoptotic molecule in mitochondria, while the lipid binding assay demonstrated subcellular communication between mitochondria and the nucleus under oxidative stress. The changes in the expression and localization of mitochondrial prohibitin triggered by reactive oxygen species are crucial for mitochondrial integrity. We propose that prohibitin shuttles between mitochondria and the nucleus as an anti-apoptotic molecule and a transcriptional regulator in a stress environment in the retina and RPE cells.
Collapse
Affiliation(s)
- Srinivas R Sripathi
- Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Lee H, Chung H, Lee SH, Jahng WJ. Light-induced phosphorylation of crystallins in the retinal pigment epithelium. Int J Biol Macromol 2010; 48:194-201. [PMID: 21094180 DOI: 10.1016/j.ijbiomac.2010.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Protein phosphorylations have essential regulatory roles in visual signaling. Previously, we found that phosphorylation of several proteins in the retina and retinal pigment epithelium (RPE) is involved in anti-apoptotic signaling under oxidative stress conditions, including light exposure. In this study, we used a phosphoprotein enrichment strategy to evaluate the light-induced phosphoproteome of primary bovine RPE cells. Phosphoprotein-enriched extracts from bovine RPE cells exposed to light or dark conditions for 1h were separated by 2D SDS-PAGE. Serine and tyrosine phosphorylations were visualized by 2D phospho Western blotting and specific phosphorylation sites were analyzed by tandem mass spectrometry. Light induced a marked increase in tyrosine phosphorylation of beta crystallin A3 and A4. The most abundant light-induced up-regulated phosphoproteins were crystallins of 15-25 kDa, including beta crystallin S and zeta crystallin. Phosphorylation of beta crystallin suggests an anti-apoptotic chaperone function of crystallins in the RPE. Other chaperones, cytoskeletal proteins, and proteins involved in energy balance were expressed at higher levels in the dark. A detailed analysis of RPE phosphoproteins provides a molecular basis for understanding of light-induced signal transduction and anti-apoptosis mechanisms. Our data indicates that phosphorylation of crystallins likely represents an important mechanism for RPE shielding from physiological and pathophysiological light-induced oxidative injury.
Collapse
Affiliation(s)
- Hyunju Lee
- Department of Ophthalmology, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|