1
|
D'Onofrio F, Schirone M, Krasteva I, Tittarelli M, Iannetti L, Pomilio F, Torresi M, Paparella A, D'Alterio N, Luciani M. A comprehensive investigation of protein expression profiles in L. monocytogenes exposed to thermal abuse, mild acid, and salt stress conditions. Front Microbiol 2023; 14:1271787. [PMID: 37876777 PMCID: PMC10591339 DOI: 10.3389/fmicb.2023.1271787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Preventing L. monocytogenes infection is crucial for food safety, considering its widespread presence in the environment and its association with contaminated RTE foods. The pathogen's ability to persist under adverse conditions, for example, in food processing facilities, is linked to virulence and resistance mechanisms, including biofilm formation. In this study, the protein expression patterns of two L. monocytogenes 1/2a strains, grown under environmental stressors (mild acidic pH, thermal abuse, and high concentration of NaCl), were investigated. Protein identification and prediction were performed by nLC-ESI-MS/MS and nine different bioinformatic software programs, respectively. Gene enrichment analysis was carried out by STRING v11.05. A total of 1,215 proteins were identified, of which 335 were non-cytosolic proteins and 265 were immunogenic proteins. Proteomic analysis revealed differences in protein expression between L. monocytogenes strains in stressful conditions. The two strains exhibited unique protein expression profiles linked to stress response, virulence, and pathogenesis. Studying the proteomic profiles of such microorganisms provides information about adaptation and potential treatments, highlighting their genetic diversity and demonstrating the utility of bioinformatics and proteomics for a broader analysis of pathogens.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
2
|
Carrión F, Rammauro F, Olivero‐Deibe N, Fló M, Portela MM, Lima A, Durán R, Pritsch O, Bianchi S. Soluble SARS-CoV-2 RBD and human ACE2 peptidase domain produced in Drosophila S2 cells show functions evoking virus-cell interface. Protein Sci 2023; 32:e4721. [PMID: 37405395 PMCID: PMC10382795 DOI: 10.1002/pro.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The interaction between the receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2 and the peptidase domain of the human angiotensin-converting enzyme 2 (ACE2) allows the first specific contact at the virus-cell interface making it the main target of neutralizing antibodies. Here, we show a unique and cost-effective protocol using Drosophila S2 cells to produce both RBD and soluble human ACE2 peptidase domain (shACE2) as thermostable proteins, purified via Strep-tag with yields >40 mg L-1 in a laboratory scale. Furthermore, we demonstrate its binding with KD values in the lower nanomolar range (independently of Strep-tag removal) and its capability to be blocked by serum antibodies in a competition ELISA with Strep-Tactin-HRP as a proof-of-concept. In addition, we assess the capacity of RBD to bind native dimeric ACE2 overexpressed in human cells and its antigen properties with specific serum antibodies. Finally, for completeness, we analyzed RBD microheterogeneity associated with glycosylation and negative charges, with negligible effect on binding either with antibodies or shACE2. Our system represents an accessible and reliable tool for designing in-house surrogate virus neutralization tests (sVNTs), enabling the rapid characterization of neutralizing humoral responses elicited against vaccines or infection, especially in the absence of facilities to conduct virus neutralization tests. Moreover, our biophysical and biochemical characterization of RBD and shACE2 produced in S2 cells lays the groundwork for adapting to different variants of concern (VOCs) to study humoral responses elicited against different VOCs and vaccine formulations.
Collapse
Affiliation(s)
- Federico Carrión
- Laboratorio de InmunovirologíaInstitut Pasteur de MontevideoMontevideoUruguay
| | - Florencia Rammauro
- Laboratorio de InmunovirologíaInstitut Pasteur de MontevideoMontevideoUruguay
- Facultad de Medicina, Departamento de InmunobiologíaUniversidad de la RepúblicaMontevideoUruguay
| | | | - Martín Fló
- Laboratorio de InmunovirologíaInstitut Pasteur de MontevideoMontevideoUruguay
- Facultad de Medicina, Departamento de InmunobiologíaUniversidad de la RepúblicaMontevideoUruguay
| | - María Magdalena Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
- Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Otto Pritsch
- Laboratorio de InmunovirologíaInstitut Pasteur de MontevideoMontevideoUruguay
- Facultad de Medicina, Departamento de InmunobiologíaUniversidad de la RepúblicaMontevideoUruguay
| | - Sergio Bianchi
- Departamento de Fisiopatología, Laboratorio de Biomarcadores Moleculares, Hospital de ClínicasUniversidad de la RepúblicaMontevideoUruguay
- Laboratorio de Genómica FuncionalInstitut Pasteur de MontevideoMontevideoUruguay
| |
Collapse
|
3
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
4
|
Dai F, Guo M, Shao Y, Li C. Novel secreted STPKLRR from Vibrio splendidus AJ01 promotes pathogen internalization via mediating tropomodulin phosphorylation dependent cytoskeleton rearrangement. PLoS Pathog 2023; 19:e1011419. [PMID: 37216400 DOI: 10.1371/journal.ppat.1011419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
We previously demonstrated that the flagellin of intracellular Vibrio splendidus AJ01 could be specifically identified by tropomodulin (Tmod) and further mediate p53-dependent coelomocyte apoptosis in the sea cucumber Apostichopus japonicus. In higher animals, Tmod serves as a regulator in stabilizing the actin cytoskeleton. However, the mechanism on how AJ01 breaks the AjTmod-stabilized cytoskeleton for internalization remains unclear. Here, we identified a novel AJ01 Type III secretion system (T3SS) effector of leucine-rich repeat-containing serine/threonine-protein kinase (STPKLRR) with five LRR domains and a serine/threonine kinase (STYKc) domain, which could specifically interact with tropomodulin domain of AjTmod. Furthermore, we found that STPKLRR directly phosphorylated AjTmod at serine 52 (S52) to reduce the binding stability between AjTmod and actin. After AjTmod dissociated from actin, the F-actin/G-actin ratio decreased to induce cytoskeletal rearrangement, which in turn promoted the internalization of AJ01. The STPKLRR knocked out strain could not phosphorylated AjTmod and displayed lower internalization capacity and pathogenic effect compared to AJ01. Overall, we demonstrated for the first time that the T3SS effector STPKLRR with kinase activity was a novel virulence factor in Vibrio and mediated self-internalization by targeting host AjTmod phosphorylation dependent cytoskeleton rearrangement, which provided a candidate target to control AJ01 infection in practice.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
5
|
Identification of serine/threonine kinases that regulate metabolism and sporulation in Clostridium beijerinckii. Appl Microbiol Biotechnol 2022; 106:7563-7575. [DOI: 10.1007/s00253-022-12234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
|
6
|
Trochine A, Bellora N, Nizovoy P, Duran R, Greif G, de García V, Batthyany C, Robello C, Libkind D. Genomic and proteomic analysis of Tausonia pullulans reveals a key role for a GH15 glucoamylase in starch hydrolysis. Appl Microbiol Biotechnol 2022; 106:4655-4667. [PMID: 35713658 DOI: 10.1007/s00253-022-12025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Basidiomycetous yeasts remain an almost unexplored source of enzymes with great potential in several industries. Tausonia pullulans (Tremellomycetes) is a psychrotolerant yeast with several extracellular enzymatic activities reported, although the responsible genes are not known. We performed the genomic sequencing, assembly and annotation of T. pullulans strain CRUB 1754 (Perito Moreno glacier, Argentina), a gene survey of carbohydrate-active enzymes (CAZymes), and analyzed its secretome by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) after growth in glucose (GLU) or starch (STA) as main carbon sources. T. pullulans has 7210 predicted genes, 3.6% being CAZymes. When compared to other Tremellomycetes, it contains a high number of CAZy domains, and in particular higher quantities of glucoamylases (GH15), pectinolytic enzymes (GH28) and lignocellulose decay enzymes (GH7). When the secretome of T. pullulans was analyzed experimentally after growth in starch or glucose, 98 proteins were identified. The 60% of total spectral counts belonged to GHs, oxidoreductases and to other CAZymes. A 65 kDa glucoamylase of family GH15 (TpGA1) showed the highest fold change (tenfold increase in starch). This enzyme contains a conserved active site and showed extensive N-glycosylation. This study increases the knowledge on the extracellular hydrolytic enzymes of basidiomycetous yeasts and, in particular, establishes T. pullulans as a potential source of carbohydrate-active enzymes. KEY POINTS: • Tausonia pullulans genome harbors a high number of genes coding for CAZymes. • Among CAZy domains/families, the glycoside hydrolases are the most abundant. • Secretome analysis in glucose or starch as main C sources identified 98 proteins. • A 65 kDa GH15 glucoamylase showed the highest fold increase upon culture in starch.
Collapse
Affiliation(s)
- Andrea Trochine
- Centro de Referencia en Levaduras Y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas Y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, (CP8400) San Carlos de Bariloche, Río Negro, Argentina.
| | - Nicolás Bellora
- Instituto de Tecnologías Nucleares Para La Salud (INTECNUS), RP82, (CP8400) San Carlos de Bariloche, Río Negro, Argentina
| | - Paula Nizovoy
- Centro de Referencia en Levaduras Y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas Y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, (CP8400) San Carlos de Bariloche, Río Negro, Argentina
| | - Rosario Duran
- Institut Pasteur de Montevideo (IPMont), Mataojo 2020, (CP11400), Montevideo, Uruguay
- Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, (CP 11600), Montevideo, Uruguay
| | - Gonzalo Greif
- Institut Pasteur de Montevideo (IPMont), Mataojo 2020, (CP11400), Montevideo, Uruguay
| | - Virginia de García
- Instituto de Investigación Y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Buenos Aires 1400, (CP8300), Neuquén, Argentina
| | - Carlos Batthyany
- Institut Pasteur de Montevideo (IPMont), Mataojo 2020, (CP11400), Montevideo, Uruguay
- Facultad de Medicina (UDELAR), Av. Gral. Flores 2125, (CP1180), Montevideo, Uruguay
| | - Carlos Robello
- Institut Pasteur de Montevideo (IPMont), Mataojo 2020, (CP11400), Montevideo, Uruguay
- Facultad de Medicina (UDELAR), Av. Gral. Flores 2125, (CP1180), Montevideo, Uruguay
| | - Diego Libkind
- Centro de Referencia en Levaduras Y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas Y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, (CP8400) San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
7
|
Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021; 433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that encodes a single eukaryotic-type Ser/Thr protein kinase StkP and its functional counterpart, the protein phosphatase PhpP. These signaling enzymes play critical roles in coordinating cell division and growth in pneumococci. In this study, we determined the proteome and phosphoproteome profiles of relevant mutants. Comparison of those with the wild-type provided a representative dataset of novel phosphoacceptor sites and StkP-dependent substrates. StkP phosphorylates key proteins involved in cell division and cell wall biosynthesis in both the unencapsulated laboratory strain Rx1 and the encapsulated virulent strain D39. Furthermore, we show that StkP plays an important role in triggering an adaptive response induced by a cell wall-directed antibiotic. Phosphorylation of the sensor histidine kinase WalK and downregulation of proteins of the WalRK core regulon suggest crosstalk between StkP and the WalRK two-component system. Analysis of proteomic profiles led to the identification of gene clusters regulated by catabolite control mechanisms, indicating a tight coupling of carbon metabolism and cell wall homeostasis. The imbalance of steady-state protein phosphorylation in the mutants as well as after antibiotic treatment is accompanied by an accumulation of the global Spx regulator, indicating a Spx-mediated envelope stress response. In summary, StkP relays the perceived signal of cell wall status to key cell division and regulatory proteins, controlling the cell cycle and cell wall homeostasis.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Rudolf Kupčík
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
8
|
Lozano C, Lee C, Wattiez R, Lebaron P, Matallana-Surget S. Unraveling the molecular effects of oxybenzone on the proteome of an environmentally relevant marine bacterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148431. [PMID: 34182435 DOI: 10.1016/j.scitotenv.2021.148431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The use of Benzophenone-3 (BP3), also known as oxybenzone, a common UV filter, is a growing environmental concern in regard to its toxicity on aquatic organisms. Our previous work stressed that BP3 is toxic to Epibacterium mobile, an environmentally relevant marine α-proteobacterium. In this study, we implemented a label-free quantitative proteomics workflow to decipher the effects of BP3 on the E. mobile proteome. Furthermore, the effect of DMSO, one of the most common solvents used to vehicle low concentrations of lipophilic chemicals, was assessed to emphasize the importance of limiting solvent concentration in ecotoxicological studies. Data-independent analysis proteomics highlighted that BP3 induced changes in the regulation of 56 proteins involved in xenobiotic export, detoxification, oxidative stress response, motility, and fatty acid, iron and amino acid metabolisms. Our results also outlined that the use of DMSO at 0.046% caused regulation changes in proteins related to transport, iron uptake and metabolism, and housekeeping functions, underlining the need to reduce the concentration of solvents in ecotoxicological studies.
Collapse
Affiliation(s)
- Clément Lozano
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France; Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom
| | - Charlotte Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom
| | - Ruddy Wattiez
- Department of Proteomic and Microbiology, University of Mons, Mons, Belgium
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, Stirling University, United Kingdom.
| |
Collapse
|
9
|
Kelliher JL, Grunenwald CM, Abrahams RR, Daanen ME, Lew CI, Rose WE, Sauer JD. PASTA kinase-dependent control of peptidoglycan synthesis via ReoM is required for cell wall stress responses, cytosolic survival, and virulence in Listeria monocytogenes. PLoS Pathog 2021; 17:e1009881. [PMID: 34624065 PMCID: PMC8528326 DOI: 10.1371/journal.ppat.1009881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
Pathogenic bacteria rely on protein phosphorylation to adapt quickly to stress, including that imposed by the host during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are signal transduction systems that sense cell wall integrity and modulate multiple facets of bacterial physiology in response to cell envelope stress. The PASTA kinase in the cytosolic pathogen Listeria monocytogenes, PrkA, is required for cell wall stress responses, cytosolic survival, and virulence, yet its substrates and downstream signaling pathways remain incompletely defined. We combined orthogonal phosphoproteomic and genetic analyses in the presence of a β-lactam antibiotic to define PrkA phosphotargets and pathways modulated by PrkA. These analyses synergistically highlighted ReoM, which was recently identified as a PrkA target that influences peptidoglycan (PG) synthesis, as an important phosphosubstrate during cell wall stress. We find that deletion of reoM restores cell wall stress sensitivities and cytosolic survival defects of a ΔprkA mutant to nearly wild-type levels. While a ΔprkA mutant is defective for PG synthesis during cell wall stress, a double ΔreoM ΔprkA mutant synthesizes PG at rates similar to wild type. In a mouse model of systemic listeriosis, deletion of reoM in a ΔprkA background almost fully restored virulence to wild-type levels. However, loss of reoM alone also resulted in attenuated virulence, suggesting ReoM is critical at some points during pathogenesis. Finally, we demonstrate that the PASTA kinase/ReoM cell wall stress response pathway is conserved in a related pathogen, methicillin-resistant Staphylococcus aureus. Taken together, our phosphoproteomic analysis provides a comprehensive overview of the PASTA kinase targets of an important model pathogen and suggests that a critical role of PrkA in vivo is modulating PG synthesis through regulation of ReoM to facilitate cytosolic survival and virulence. Many antibiotics target bacterial cell wall biosynthesis, justifying continued study of this process and the ways bacteria respond to cell wall insults during infection. Penicillin-binding protein and serine/threonine-associated (PASTA) kinases are master regulators of cell wall stress responses in bacteria and are conserved in several major pathogens, including Listeria monocytogenes, Staphylococcus aureus, and Mycobacterium tuberculosis. We previously showed that the PASTA kinase in L. monocytogenes, PrkA, is essential for the response to cell wall stress and for virulence. In this work, we combined proteomic and genetic approaches to identify PrkA substrates in L. monocytogenes. We show that regulation of one candidate from both screens, ReoM, increases synthesis of the cell wall component peptidoglycan and that this regulation is required for pathogenesis. We also demonstrate that the PASTA kinase-ReoM pathway regulates cell wall stress responses in another significant pathogen, methicillin-resistant S. aureus. Additionally, we uncover a PrkA-independent role for ReoM in vivo in L. monocytogenes, suggesting a need for nuanced modulation of peptidoglycan synthesis during infection. Cumulatively, this study provides new insight into how bacterial pathogens control cell wall synthesis during infection.
Collapse
Affiliation(s)
- Jessica L. Kelliher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caroline M. Grunenwald
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rhiannon R. Abrahams
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - McKenzie E. Daanen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cassandra I. Lew
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ahmed A, Khurshid A, Tang X, Wang J, Khan TU, Mao Y. Structural and Functional Impacts of Microbiota on Pyropia yezoensis and Surrounding Seawater in Cultivation Farms along Coastal Areas of the Yellow Sea. Microorganisms 2021; 9:microorganisms9061291. [PMID: 34204837 PMCID: PMC8231614 DOI: 10.3390/microorganisms9061291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Pyropia yezoensis is the most important commercial edible red algae in China, carrying a variety of resident microbes at its surface. To understand microbiome diversity, community structure, interactions and functions with hosts in this regard, thalli and seawater sampleswere collected from Yantai and Rizhao cultivation farms in the Yellow Sea. The thalli and seawater samples (n = 12) were collected and studied using an Illumina NovaSeq 6000 platform and 16S ribosomal RNA (rRNA) gene sequencing, along with the consideration of environmental factors. Bacterial communities in association with P. yezoensis and surrounding seawater were predominated by Cyanobacteria, Proteobacteria, and Bacteroidetes. The variability of bacterial communities related to P. yezoensis and seawater were predominantly shaped by nitrate (NO3), ammonium (NH4), and temperature. Cluster analysis revealed a close relationship between thalli (RTH and YTH) and seawater (RSW and YSW) in terms of the residing bacterial communities, respectively. PICRUSt analysis revealed the presence of genes associated with amino acid transportation and metabolism, which explained the bacterial dependence on algal-provided nutrients. This study reveals that the diversity of microbiota for P. yezoensis is greatly influenced by abiotic factors and algal organic exudates which trigger chemical signaling and transportation responses from the bacterial community, which in turn activates genes to metabolize subsequent substrates.
Collapse
Affiliation(s)
- Arsalan Ahmed
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Anam Khurshid
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Tehsin Ullah Khan
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (A.A.); (A.K.); (X.T.); (J.W.); (T.U.K.)
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China
- Correspondence:
| |
Collapse
|
11
|
Proteome remodeling in the Mycobacterium tuberculosis PknG knockout: Molecular evidence for the role of this kinase in cell envelope biogenesis and hypoxia response. J Proteomics 2021; 244:104276. [PMID: 34044169 DOI: 10.1016/j.jprot.2021.104276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis, is among the deadliest human pathogens. One of M. tuberculosis's pathogenic hallmarks is its ability to persist in a dormant state in the host. Thus, this pathogen has developed mechanisms to withstand stressful conditions found in the human host. Particularly, the Ser/Thr-protein kinase PknG has gained relevance since it regulates nitrogen metabolism and facilitates bacterial survival inside macrophages. Nevertheless, the molecular mechanisms underlying these effects are far from being elucidated. To further investigate these issues, we performed quantitative proteomic analyses of protein extracts from M. tuberculosis H37Rv and a mutant lacking pknG. We found that in the absence of PknG the mycobacterial proteome was remodeled since 5.7% of the proteins encoded by M. tuberculosis presented significant changes in its relative abundance compared with the wild-type. The main biological processes affected by pknG deletion were cell envelope components biosynthesis and response to hypoxia. Thirteen DosR-regulated proteins were underrepresented in the pknG deletion mutant, including Hrp-1, which was 12.5-fold decreased according to Parallel Reaction Monitoring experiments. Altogether, our results allow us to postulate that PknG regulation of bacterial adaptation to stress conditions might be an important mechanism underlying its reported effect on intracellular bacterial survival. SIGNIFICANCE: PknG is a Ser/Thr kinase from Mycobacterium tuberculosis with key roles in bacterial metabolism and bacterial survival within the host. However, at present the molecular mechanisms underlying these functions remain largely unknown. In this work, we evaluate the effect of pknG deletion on M. tuberculosis proteome using different approaches. Our results clearly show that the global proteome was remodeled in the absence of PknG and shed light on new molecular mechanism underlying PknG role. Altogether, this work contributes to a better understanding of the molecular bases of the adaptation of M. tuberculosis, one of the most deadly human pathogens, to its host.
Collapse
|
12
|
Qu D, Zhao X, Sun Y, Wu FL, Tao SC. Mycobacterium tuberculosis Thymidylyltransferase RmlA Is Negatively Regulated by Ser/Thr Protein Kinase PknB. Front Microbiol 2021; 12:643951. [PMID: 33868202 PMCID: PMC8044546 DOI: 10.3389/fmicb.2021.643951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ser/Thr phosphorylation by serine/threonine protein kinases (STPKs) plays significant roles in molecular regulation, which allows Mycobacteria to adapt their cell wall structure in response to the environment changes. Identifying direct targets of STPKs and determining their activities are therefore critical to revealing their function in Mycobacteria, for example, in cell wall formation and virulence. Herein, we reported that RmlA, a crucial L-rhamnose biosynthesis enzyme, is a substrate of STPK PknB in Mycobacterium tuberculosis (M. tuberculosis). Mass spectrometry analysis revealed that RmlA is phosphorylated at Thr-12, Thr-54, Thr-197, and Thr-12 is located close to the catalytic triad of RmlA. Biochemical and phenotypic analysis of two RmlA mutants, T12A/T12D, showed that their activities were reduced, and cell wall formation was negatively affected. Moreover, virulence of RmlA T12D mutant was attenuated in a macrophage model. Overall, these results provide the first evidence for the role of PknB-dependent RmlA phosphorylation in regulating cell wall formation in Mycobacteria, with significant implications for pathogenicity.
Collapse
Affiliation(s)
- Dehui Qu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Yao Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Fan-Lin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Are antibacterial effects of non-antibiotic drugs random or purposeful because of a common evolutionary origin of bacterial and mammalian targets? Infection 2020; 49:569-589. [PMID: 33325009 PMCID: PMC7737717 DOI: 10.1007/s15010-020-01547-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
Purpose Advances in structural biology, genetics, bioinformatics, etc. resulted in the availability of an enormous pool of information enabling the analysis of the ancestry of pro- and eukaryotic genes and proteins. Methods This review summarizes findings of structural and/or functional homologies of pro- and eukaryotic enzymes catalysing analogous biological reactions because of their highly conserved active centres so that non-antibiotics interacted with bacterial targets. Results Protease inhibitors such as staurosporine or camostat inhibited bacterial serine/threonine or serine/tyrosine protein kinases, serine/threonine phosphatases, and serine/threonine kinases, to which penicillin-binding-proteins are linked, so that these drugs synergized with β-lactams, reverted aminoglycoside-resistance and attenuated bacterial virulence. Calcium antagonists such as nitrendipine or verapamil blocked not only prokaryotic ion channels but interacted with negatively charged bacterial cell membranes thus disrupting membrane energetics and inducing membrane stress response resulting in inhibition of P-glycoprotein such as bacterial pumps thus improving anti-mycobacterial activities of rifampicin, tetracycline, fluoroquinolones, bedaquilin and imipenem-activity against Acinetobacter spp. Ciclosporine and tacrolimus attenuated bacterial virulence. ACE-inhibitors like captopril interacted with metallo-β-lactamases thus reverting carbapenem-resistance; prokaryotic carbonic anhydrases were inhibited as well resulting in growth impairment. In general, non-antibiotics exerted weak antibacterial activities on their own but synergized with antibiotics, and/or reverted resistance and/or attenuated virulence. Conclusions Data summarized in this review support the theory that prokaryotic proteins represent targets for non-antibiotics because of a common evolutionary origin of bacterial- and mammalian targets resulting in highly conserved active centres of both, pro- and eukaryotic proteins with which the non-antibiotics interact and exert antibacterial actions.
Collapse
|
14
|
Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2020; 36:132-144. [PMID: 32945615 DOI: 10.1111/omi.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole E Minton
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Martinez E, Huc-Brandt S, Brelle S, Allombert J, Cantet F, Gannoun-Zaki L, Burette M, Martin M, Letourneur F, Bonazzi M, Molle V. The secreted protein kinase CstK from Coxiella burnetii influences vacuole development and interacts with the GTPase-activating host protein TBC1D5. J Biol Chem 2020; 295:7391-7403. [PMID: 32303638 PMCID: PMC7247299 DOI: 10.1074/jbc.ra119.010112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/14/2020] [Indexed: 03/01/2024] Open
Abstract
The intracellular bacterial pathogen Coxiella burnetii is the etiological agent of the emerging zoonosis Q fever. Crucial to its pathogenesis is type 4b secretion system-mediated secretion of bacterial effectors into host cells that subvert host cell membrane trafficking, leading to the biogenesis of a parasitophorous vacuole for intracellular replication. The characterization of prokaryotic serine/threonine protein kinases in bacterial pathogens is emerging as an important strategy to better understand host-pathogen interactions. In this study, we investigated CstK (for Coxiella Ser/Thr kinase), a protein kinase identified in C. burnetii by in silico analysis. We demonstrate that this putative protein kinase undergoes autophosphorylation on Thr and Tyr residues and phosphorylates a classical eukaryotic protein kinase substrate in vitro This dual Thr-Tyr kinase activity is also observed for a eukaryotic dual-specificity Tyr phosphorylation-regulated kinase class. We found that CstK is translocated during infections and localizes to Coxiella-containing vacuoles (CCVs). Moreover, a CstK-overexpressing C. burnetii strain displayed a severe CCV development phenotype, suggesting that CstK fine-tunes CCV biogenesis during the infection. Protein-protein interaction experiments identified the Rab7 GTPase-activating protein TBC1D5 as a candidate CstK-specific target, suggesting a role for this host GTPase-activating protein in Coxiella infections. Indeed, CstK co-localized with TBC1D5 in noninfected cells, and TBC1D5 was recruited to CCVs in infected cells. Accordingly, TBC1D5 depletion from infected cells significantly affected CCV development. Our results indicate that CstK functions as a bacterial effector protein that interacts with the host protein TBC1D5 during vacuole biogenesis and intracellular replication.
Collapse
Affiliation(s)
- Eric Martinez
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France
| | - Sylvaine Huc-Brandt
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Solène Brelle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Julie Allombert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France
| | - Franck Cantet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France
| | - Laila Gannoun-Zaki
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Mélanie Burette
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France
| | - Marianne Martin
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, UMR 9004, Montpellier, France.
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, Montpellier, France.
| |
Collapse
|
16
|
Gibhardt J, Heidemann JL, Bremenkamp R, Rosenberg J, Seifert R, Kaever V, Ficner R, Commichau FM. An extracytoplasmic protein and a moonlighting enzyme modulate synthesis of c-di-AMP in Listeria monocytogenes. Environ Microbiol 2020; 22:2771-2791. [PMID: 32250026 DOI: 10.1111/1462-2920.15008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023]
Abstract
The second messenger cyclic di-AMP (c-di-AMP) is essential for growth of many bacteria because it controls osmolyte homeostasis. c-di-AMP can regulate the synthesis of potassium uptake systems in some bacteria and it also directly inhibits and activates potassium import and export systems, respectively. Therefore, c-di-AMP production and degradation have to be tightly regulated depending on the environmental osmolarity. The Gram-positive pathogen Listeria monocytogenes relies on the membrane-bound diadenylate cyclase CdaA for c-di-AMP production and degrades the nucleotide with two phosphodiesterases. While the enzymes producing and degrading the dinucleotide have been reasonably well examined, the regulation of c-di-AMP production is not well understood yet. Here we demonstrate that the extracytoplasmic regulator CdaR interacts with CdaA via its transmembrane helix to modulate c-di-AMP production. Moreover, we show that the phosphoglucosamine mutase GlmM forms a complex with CdaA and inhibits the diadenylate cyclase activity in vitro. We also found that GlmM inhibits c-di-AMP production in L. monocytogenes when the bacteria encounter osmotic stress. Thus, GlmM is the major factor controlling the activity of CdaA in vivo. GlmM can be assigned to the class of moonlighting proteins because it is active in metabolism and adjusts the cellular turgor depending on environmental osmolarity.
Collapse
Affiliation(s)
- Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Jana L Heidemann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, University of Goettingen, 37077, Göttingen, Germany
| | - Rica Bremenkamp
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Roland Seifert
- Institute of Pharmacology & Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology & Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, University of Goettingen, 37077, Göttingen, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| |
Collapse
|
17
|
Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One 2020; 15:e0221837. [PMID: 32126063 PMCID: PMC7053730 DOI: 10.1371/journal.pone.0221837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Despite being the subject of intensive research, tuberculosis, caused by Mycobacterium tuberculosis, remains at present the leading cause of death from an infectious agent. Secreted and cell wall proteins interact with the host and play important roles in pathogenicity. These proteins are explored as candidate diagnostic markers, potential drug targets or vaccine antigens, and more recently special attention is being given to the role of their post-translational modifications. With the purpose of contributing to the proteomic and glycoproteomic characterization of this important pathogen, we performed a shotgun analysis of culture filtrate proteins of M. tuberculosis based on a liquid nano-HPLC tandem mass spectrometry and a label-free spectral counting normalization approach for protein quantification. We identified 1314 M. tuberculosis proteins in culture filtrate and found that the most abundant proteins belong to the extracellular region or cell wall compartment, and that the functional categories with higher protein abundance factor were virulence, detoxification and adaptation, and cell wall and cell processes. We could identify a group of proteins consistently detected in previous studies, most of which were highly abundant proteins. In culture filtrate, 140 proteins were predicted to contain one of the three types of bacterial N-terminal signal peptides. Besides, various proteins belonging to the ESX secretion systems, and to the PE and PPE families, secreted by the type VII secretion system using nonclassical secretion signals, were also identified. O-glycosylation was identified in 46 proteins, many of them lipoproteins and cell wall associated proteins. Finally, we provide proteomic evidence for 33 novel O-glycosylated proteins, aiding to the glycoproteomic characterization of relevant antigenic membrane and exported proteins. These findings are expected to collaborate with the research on pathogen derived biomarkers, virulence factors and vaccine candidates, and to provide clues to the understanding of the pathogenesis and survival strategies adopted by M. tuberculosis.
Collapse
Affiliation(s)
- Paula Tucci
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Rivas Chetto
- Departamento de Laboratorio, Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes, Centro de Referencia Nacional para Micobacterias, Ministerio de Salud Pública, Montevideo, Uruguay
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Universidad de la Republica Uruguay, Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Vazquez-Armenta FJ, Hernandez-Oñate MA, Martinez-Tellez MA, Lopez-Zavala AA, Gonzalez-Aguilar GA, Gutierrez-Pacheco MM, Ayala-Zavala JF. Quercetin repressed the stress response factor (sigB) and virulence genes (prfA, actA, inlA, and inlC), lower the adhesion, and biofilm development of L. monocytogenes. Food Microbiol 2019; 87:103377. [PMID: 31948618 DOI: 10.1016/j.fm.2019.103377] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
The present study explored the effect of quercetin on the expression of virulence genes actA, inlA, inlC, and their regulatory components, sigB and prfA, in L. monocytogenes. Furthermore, the physicochemical changes on the surface, membrane permeability, and biofilm formation of quercetin-treated bacteria were evaluated. An inhibitory dose-dependent effect of quercetin (0.1-0.8 mM) was observed on the cell attachment on stainless steel at 2 and 6 h at 37 °C. Quercetin at 0.8 mM prevented the biofilm formation on stainless steel surfaces after 6 h of incubation at 37 °C, while the untreated bacteria formed biofilms with a cell density of 5.1 Log CFU/cm2. The microscopic analysis evidenced that quercetin at 0.2 mM decreased the biovolume and covered area of the attached micro-colonies. Also, sigB, prfA, inlA, inlC, and actA genes were downregulated by 7-29 times lower compared to untreated bacteria. In addition, quercetin decreased the superficial cell charge, increased the membrane permeability, and its surface hydrophobicity. These results demonstrated that quercetin prevented biofilm formation, repressed the genes of stress and virulence of L. monocytogenes and also altered the physicochemical cell properties.
Collapse
Affiliation(s)
- F J Vazquez-Armenta
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - M A Hernandez-Oñate
- CONACYT - Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - M A Martinez-Tellez
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - A A Lopez-Zavala
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Blvd. Rosales y Luis Encinas, Hermosillo, Sonora, 83000, Mexico
| | - G A Gonzalez-Aguilar
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - M M Gutierrez-Pacheco
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - J F Ayala-Zavala
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
19
|
A novel form of Deleted in breast cancer 1 (DBC1) lacking the N-terminal domain does not bind SIRT1 and is dynamically regulated in vivo. Sci Rep 2019; 9:14381. [PMID: 31591441 PMCID: PMC6779753 DOI: 10.1038/s41598-019-50789-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
The protein Deleted in Breast Cancer-1 is a regulator of several transcription factors and epigenetic regulators, including HDAC3, Rev-erb-alpha, PARP1 and SIRT1. It is well known that DBC1 regulates its targets, including SIRT1, by protein-protein interaction. However, little is known about how DBC1 biological activity is regulated. In this work, we show that in quiescent cells DBC1 is proteolytically cleaved, producing a protein (DN-DBC1) that misses the S1-like domain and no longer binds to SIRT1. DN-DBC1 is also found in vivo in mouse and human tissues. Interestingly, DN-DBC1 is cleared once quiescent cells re-enter to the cell cycle. Using a model of liver regeneration after partial hepatectomy, we found that DN-DBC1 is down-regulated in vivo during regeneration. In fact, WT mice show a decrease in SIRT1 activity during liver regeneration, coincidentally with DN-DBC1 downregulation and the appearance of full length DBC1. This effect on SIRT1 activity was not observed in DBC1 KO mice. Finally, we found that DBC1 KO mice have altered cell cycle progression and liver regeneration after partial hepatectomy, suggesting that DBC1/DN-DBC1 transitions play a role in normal cell cycle progression in vivo after cells leave quiescence. We propose that quiescent cells express DN-DBC1, which either replaces or coexist with the full-length protein, and that restoring of DBC1 is required for normal cell cycle progression in vitro and in vivo. Our results describe for the first time in vivo a naturally occurring form of DBC1, which does not bind SIRT1 and is dynamically regulated, thus contributing to redefine the knowledge about its function.
Collapse
|
20
|
Ren Y, Su H, She Y, Dai C, Xie D, Narrandes S, Huang S, Chen C, Xu W. Whole genome sequencing revealed microbiome in lung adenocarcinomas presented as ground-glass nodules. Transl Lung Cancer Res 2019; 8:235-246. [PMID: 31367537 DOI: 10.21037/tlcr.2019.06.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Emerging evidence has suggested that dysbiosis of the microbiota may play vital roles in tumorigenesis. However, the interplay between the microbiome and lung cancer remains undetermined. In this study, we characterize the microbiome in the early stage of lung cancer, which presented as ground-glass nodules (GGNs). Methods We sequenced the whole genomes from 10 GGN lesions and 5 adjacent normal lung tissue samples. After being filtered with human genome sequences, the sequence reads were mapped to prokaryotic genomes refSeq and non-redundant protein database for taxa and gene functions profiling, respectively. Results Mycobacterium, Corynebacterium, and Negativicoccus were the core microbiota found in all GGNs and the normal tissue samples. The microbiota composition did not show significant difference between GGNs and normal tissues except the adenocarcinoma (AD) (P=0.047). A significant β diversity in microbiome gene functions was found among different patients. Two individual gene functions, the Secondary Metabolism (1.32 fold with P=0.01) and the Serine Threonine protein kinase (4.23 fold, P<0.001), were significantly increased in GGNs over normal tissue samples. Conclusions This study helps shed light on the implication of the microbiome in early stage lung cancer, which encourages the further study and development of innovative strategies for early prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Shavira Narrandes
- Research Institute of Oncology and Hematology, CancerCare Manitoba & University of Manitoba, Winnipeg, MB, Canada
| | - Shujung Huang
- Research Institute of Oncology and Hematology, CancerCare Manitoba & University of Manitoba, Winnipeg, MB, Canada
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wayne Xu
- Research Institute of Oncology and Hematology, CancerCare Manitoba & University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Janczarek M, Vinardell JM, Lipa P, Karaś M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int J Mol Sci 2018; 19:ijms19102872. [PMID: 30248937 PMCID: PMC6213207 DOI: 10.3390/ijms19102872] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
22
|
Ortega C, Prieto D, Abreu C, Oppezzo P, Correa A. Multi-Compartment and Multi-Host Vector Suite for Recombinant Protein Expression and Purification. Front Microbiol 2018; 9:1384. [PMID: 29997597 PMCID: PMC6030378 DOI: 10.3389/fmicb.2018.01384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Recombinant protein expression has become an invaluable tool in basic and applied research. The accumulated knowledge in this field allowed the expression of thousands of protein targets in a soluble, pure, and homogeneous state, essential for biochemical and structural analyses. A lot of progress has been achieved in the last decades, where challenging proteins were expressed in a soluble manner after evaluating different parameters such as host, strain, and fusion partner or promoter strength, among others. In this regard, we have previously developed a vector suite that allows the evaluation of different promoters and solubility enhancer-proteins, through an easy and efficient cloning strategy. Nonetheless, the proper expression of many targets remains elusive, requiring, for example, the addition of complex post-translation modifications and/or passage through specialized compartments. In order to overcome the limitations found when working with a single subcellular localization and a single host type, we herein expanded our previously developed vector suite to include the evaluation of recombinant protein expression in different cell compartments and cell hosts. In addition, these vectors also allow the assessment of alternative purification strategies for the improvement of target protein yields.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Daniel Prieto
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Abreu
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
23
|
Mayta ML, Lodeyro AF, Guiamet JJ, Tognetti VB, Melzer M, Hajirezaei MR, Carrillo N. Expression of a Plastid-Targeted Flavodoxin Decreases Chloroplast Reactive Oxygen Species Accumulation and Delays Senescence in Aging Tobacco Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:1039. [PMID: 30065745 PMCID: PMC6056745 DOI: 10.3389/fpls.2018.01039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 05/02/2023]
Abstract
Leaf senescence is a concerted physiological process involving controlled degradation of cellular structures and reallocation of breakdown products to other plant organs. It is accompanied by increased production of reactive oxygen species (ROS) that are proposed to signal cell death, although both the origin and the precise role of ROS in the execution of this developmental program are still poorly understood. To investigate the contribution of chloroplast-associated ROS to natural leaf senescence, we used tobacco plants expressing a plastid-targeted flavodoxin, an electron shuttle flavoprotein present in prokaryotes and algae. When expressed in plants, flavodoxin specifically prevents ROS formation in chloroplasts during stress situations. Senescence symptoms were significantly mitigated in these transformants, with decreased accumulation of chloroplastic ROS and differential preservation of chlorophylls, carotenoids, protein contents, cell and chloroplast structures, membrane integrity and cell viability. Flavodoxin also improved maintenance of chlorophyll-protein complexes, photosynthetic electron flow, CO2 assimilation, central metabolic routes and levels of bioactive cytokinins and auxins in aging leaves. Delayed induction of senescence-associated genes indicates that the entire genetic program of senescence was affected by flavodoxin. The results suggest that ROS generated in chloroplasts are involved in the regulation of natural leaf senescence.
Collapse
Affiliation(s)
- Martín L. Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan J. Guiamet
- Instituto de Fisiología Vegetal (INFIVE–UNLP/CONICET), La Plata, Argentina
| | - Vanesa B. Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Seeland, Germany
| | - Mohammad R. Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Seeland, Germany
- *Correspondence: Mohammad R. Hajirezaei, Néstor Carrillo,
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Mohammad R. Hajirezaei, Néstor Carrillo,
| |
Collapse
|
24
|
Rossello J, Lima A, Gil M, Rodríguez Duarte J, Correa A, Carvalho PC, Kierbel A, Durán R. The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism. Sci Rep 2017; 7:10281. [PMID: 28860517 PMCID: PMC5579053 DOI: 10.1038/s41598-017-09926-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
The second messenger c-di-GMP regulates the switch between motile and sessile bacterial lifestyles. A general feature of c-di-GMP metabolism is the presence of a surprisingly large number of genes coding for diguanylate cyclases and phosphodiesterases, the enzymes responsible for its synthesis and degradation respectively. However, the physiological relevance of this apparent redundancy is not clear, emphasizing the need for investigating the functions of each of these enzymes. Here we focused on the phosphodiesterase PA2133 from Pseudomonas aeruginosa, an important opportunistic pathogen. We phenotypically characterized P. aeruginosa strain K overexpressing PA2133 or its inactive mutant. We showed that biofilm formation and motility are severely impaired by overexpression of PA2133. Our quantitative proteomic approach applied to the membrane and exoprotein fractions revealed that proteins involved in three processes were mostly affected: flagellar motility, type III secretion system and chemotaxis. While inhibition of biofilm formation can be ascribed to the phosphodiesterase activity of PA2133, down-regulation of flagellar, chemotaxis, and type III secretion system proteins is independent of this enzymatic activity. Based on these unexpected effects of PA2133, we propose to rename this gene product FcsR, for Flagellar, chemotaxis and type III secretion system Regulator.
Collapse
Affiliation(s)
- Jessica Rossello
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Analía Lima
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Magdalena Gil
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Jorge Rodríguez Duarte
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Agustín Correa
- Unidad de Proteínas Recombinantes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paulo C Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
25
|
Study on inactivation mechanisms of Listeria grayi
affected by pulse magnetic field via morphological structure, Ca2+
transmembrane transport and proteomic analysis. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Pensinger DA, Schaenzer AJ, Sauer JD. Do Shoot the Messenger: PASTA Kinases as Virulence Determinants and Antibiotic Targets. Trends Microbiol 2017; 26:56-69. [PMID: 28734616 DOI: 10.1016/j.tim.2017.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
All domains of life utilize protein phosphorylation as a mechanism of signal transduction. In bacteria, protein phosphorylation was classically thought to be mediated exclusively by histidine kinases as part of two-component signaling systems. However, it is now well appreciated that eukaryotic-like serine/threonine kinases (eSTKs) control essential processes in bacteria. A subset of eSTKs are single-pass transmembrane proteins that have extracellular penicillin-binding-protein and serine/threonine kinase-associated (PASTA) domains which bind muropeptides. In a variety of important pathogens, PASTA kinases have been implicated in regulating biofilms, antibiotic resistance, and ultimately virulence. Although there are limited examples of direct regulation of virulence factors, PASTA kinases are critical for virulence due to their roles in regulating bacterial physiology in the context of stress. This review focuses on the role of PASTA kinases in virulence for a variety of important Gram-positive pathogens and concludes with a discussion of current efforts to develop kinase inhibitors as novel antimicrobials.
Collapse
Affiliation(s)
- Daniel A Pensinger
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam J Schaenzer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John-Demian Sauer
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Batthyány C, Bartesaghi S, Mastrogiovanni M, Lima A, Demicheli V, Radi R. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects. Antioxid Redox Signal 2017; 26:313-328. [PMID: 27324931 PMCID: PMC5326983 DOI: 10.1089/ars.2016.6787] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. CRITICAL ISSUES Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. FUTURE DIRECTIONS The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.
Collapse
Affiliation(s)
- Carlos Batthyány
- 1 Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- 3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay .,4 Departamento de Educación Médica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- 1 Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Verónica Demicheli
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
28
|
Haubrich BA, Swinney DC. Enzyme Activity Assays for Protein Kinases: Strategies to Identify Active Substrates. Curr Drug Discov Technol 2016; 13:2-15. [PMID: 26768716 DOI: 10.2174/1570163813666160115125930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
Protein kinases are an important class of enzymes and drug targets. New opportunities to discover medicines for neglected diseases can be leveraged by the extensive kinase tools and knowledge created in targeting human kinases. A valuable tool for kinase drug discovery is an enzyme assay that measures catalytic function. The functional assay can be used to identify inhibitors, estimate affinity, characterize molecular mechanisms of action (MMOAs) and evaluate selectivity. However, establishing an enzyme assay for a new kinases requires identification of a suitable substrate. Identification of a new kinase's endogenous physiologic substrate and function can be extremely costly and time consuming. Fortunately, most kinases are promiscuous and will catalyze the phosphotransfer from ATP to alternative substrates with differing degrees of catalytic efficiency. In this manuscript we review strategies and successes in the identification of alternative substrates for kinases from organisms responsible for many of the neglected tropical diseases (NTDs) towards the goal of informing strategies to identify substrates for new kinases. Approaches for establishing a functional kinase assay include measuring auto-activation and use of generic substrates and peptides. The most commonly used generic substrates are casein, myelin basic protein, and histone. Sequence homology modeling can provide insights into the potential substrates and the requirement for activation. Empirical approaches that can identify substrates include screening of lysates (which may also help identify native substrates) and use of peptide arrays. All of these approaches have been used with a varying degree of success to identify alternative substrates.
Collapse
Affiliation(s)
- Brad A Haubrich
- Institute for Rare and Neglected Diseases Drug Discovery, 897 Independence Ave, Suite 2C, Mountain View, CA 94043, USA.
| | | |
Collapse
|
29
|
Pensinger DA, Boldon KM, Chen GY, Vincent WJB, Sherman K, Xiong M, Schaenzer AJ, Forster ER, Coers J, Striker R, Sauer JD. The Listeria monocytogenes PASTA Kinase PrkA and Its Substrate YvcK Are Required for Cell Wall Homeostasis, Metabolism, and Virulence. PLoS Pathog 2016; 12:e1006001. [PMID: 27806131 PMCID: PMC5091766 DOI: 10.1371/journal.ppat.1006001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/14/2016] [Indexed: 12/02/2022] Open
Abstract
Obstacles to bacterial survival and replication in the cytosol of host cells, and the mechanisms used by bacterial pathogens to adapt to this niche are not well understood. Listeria monocytogenes is a well-studied Gram-positive foodborne pathogen that has evolved to invade and replicate within the host cell cytosol; yet the mechanisms by which it senses and responds to stress to survive in the cytosol are largely unknown. To assess the role of the L. monocytogenes penicillin-binding-protein and serine/threonine associated (PASTA) kinase PrkA in stress responses, cytosolic survival and virulence, we constructed a ΔprkA deletion mutant. PrkA was required for resistance to cell wall stress, growth on cytosolic carbon sources, intracellular replication, cytosolic survival, inflammasome avoidance and ultimately virulence in a murine model of Listeriosis. In Bacillus subtilis and Mycobacterium tuberculosis, homologues of PrkA phosphorylate a highly conserved protein of unknown function, YvcK. We found that, similar to PrkA, YvcK is also required for cell wall stress responses, metabolism of glycerol, cytosolic survival, inflammasome avoidance and virulence. We further demonstrate that similar to other organisms, YvcK is directly phosphorylated by PrkA, although the specific site(s) of phosphorylation are not highly conserved. Finally, analysis of phosphoablative and phosphomimetic mutants of YvcK in vitro and in vivo demonstrate that while phosphorylation of YvcK is irrelevant to metabolism and cell wall stress responses, surprisingly, a phosphomimetic, nonreversible negative charge of YvcK is detrimental to cytosolic survival and virulence in vivo. Taken together our data identify two novel virulence factors essential for cytosolic survival and virulence of L. monocytogenes. Furthermore, our data demonstrate that regulation of YvcK phosphorylation is tightly controlled and is critical for virulence. Finally, our data suggest that yet to be identified substrates of PrkA are essential for cytosolic survival and virulence of L. monocytogenes and illustrate the importance of studying protein phosphorylation in the context of infection.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kyle M. Boldon
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Grischa Y. Chen
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - William J. B. Vincent
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kyle Sherman
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Meng Xiong
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Adam J. Schaenzer
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Emily R. Forster
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina
| | - Rob Striker
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- W. S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
30
|
Tucci P, Estevez V, Becco L, Cabrera-Cabrera F, Grotiuz G, Reolon E, Marín M. Identification of Leukotoxin and other vaccine candidate proteins in a Mannheimia haemolytica commercial antigen. Heliyon 2016; 2:e00158. [PMID: 27699279 PMCID: PMC5035357 DOI: 10.1016/j.heliyon.2016.e00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022] Open
Abstract
Bovine Respiratory Disease is the most costly disease that affects beef and dairy cattle industry. Its etiology is multifactorial, arising from predisposing environmental stress conditions as well as the action of several different respiratory pathogens. This situation has hindered the development of effective control strategies. Although different type of vaccines are available, many currently marketed vaccines are based on inactivated cultures of the main viral and bacterial agents involved in this pathology. The molecular composition of commercial veterinary vaccines is a critical issue. The present work aims to define at the proteomic level the most relevant valence of a line of commercial respiratory vaccines widely used in Central and South America. Since Mannheimia haemolytica is responsible for most of the disease associated morbid-mortality, we focused on the main proteins secreted by this pathogen, in particular Leukotoxin A, its main virulence factor. By Western blot analysis and mass spectrometry, Leukotoxin A was identified as a major component of M. haemolytica culture supernatants. We also identified other ten M. haemolytica proteins, including outer membrane proteins, periplasmic transmembrane solute transporters and iron binding proteins, which are relevant to achieve protective immunity against the pathogen. This work allowed a detailed molecular characterization of this vaccine component, providing evidence of its quality and efficacy. Furthermore, our results contributed to the identification of several proteins of interest as subunit vaccine candidates.
Collapse
Affiliation(s)
- Paula Tucci
- Biotechnology Division, Laboratorios Celsius, S.A. Avenida Italia 6201, Montevideo, Uruguay; Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, Montevideo, Uruguay
| | - Verónica Estevez
- Biotechnology Division, Laboratorios Celsius, S.A. Avenida Italia 6201, Montevideo, Uruguay
| | - Lorena Becco
- Biotechnology Division, Laboratorios Celsius, S.A. Avenida Italia 6201, Montevideo, Uruguay
| | - Florencia Cabrera-Cabrera
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, Montevideo, Uruguay
| | - Germán Grotiuz
- Virbac Uruguay, S.A. Avda. Millán 4175, Montevideo, Uruguay
| | - Eduardo Reolon
- Virbac Uruguay, S.A. Avda. Millán 4175, Montevideo, Uruguay
| | - Mónica Marín
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, Montevideo, Uruguay
| |
Collapse
|
31
|
Semanjski M, Macek B. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications. Expert Rev Proteomics 2016; 13:139-56. [PMID: 26653908 DOI: 10.1586/14789450.2016.1132168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry-based proteomics is increasingly used in analysis of bacterial pathogens. Simple experimental set-ups based on high accuracy mass spectrometry and powerful biochemical and bioinformatics tools are capable of reliably quantifying levels of several thousand bacterial proteins in a single experiment, reaching the analytical capacity to completely map whole proteomes. Here the authors present the state-of-the-art in bacterial pathogen proteomics and discuss challenges that the field is facing, especially in analysis of low abundant, modified proteins from organisms that are difficult to culture. Constant improvements in speed and sensitivity of mass spectrometers, as well as in bioinformatic and biochemical workflows will soon allow for comprehensive analysis of regulatory mechanisms of pathogenicity and enable routine application of proteomics in the clinical setting.
Collapse
Affiliation(s)
- Maja Semanjski
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| | - Boris Macek
- a Quantitative Proteomics and Proteome Center Tuebingen, Interfaculty Institute for Cell Biology , University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
32
|
Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence 2015; 5:863-85. [PMID: 25603430 PMCID: PMC4601284 DOI: 10.4161/21505594.2014.983404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential.
Collapse
Key Words
- OCS, one-component signaling
- PASTA, penicillin-binding protein and Ser/Thr kinase associated
- PPM, protein phosphatase metal binding
- PTM, posttranslational modification
- REC, receiver
- ROS, reactive oxygen species
- TCS, two-component signaling
- bacteria
- eSTK, eukaryotic-like serine-threonine kinase
- eSTP, eukaryotic-like serine-threonine phosphatase
- infection
- phosphorylation
- serine threonine kinase
- serine threonine phosphatase
- transcription
- wHTH, winged helix-turn-helix
Collapse
Affiliation(s)
- David P Wright
- a MRC Centre for Molecular Bacteriology and Infection (CMBI); Imperial College London ; London , UK
| | | |
Collapse
|
33
|
Herbst FA, Danielsen HN, Wimmer R, Nielsen PH, Dueholm MS. Label-free quantification reveals major proteomic changes in Pseudomonas putida F1 during the exponential growth phase. Proteomics 2015; 15:3244-52. [PMID: 26122999 DOI: 10.1002/pmic.201400482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 04/30/2015] [Accepted: 06/26/2015] [Indexed: 01/12/2023]
Abstract
The physiological adaptation to stationary growth by Pseudomonas putida F1, a model organism for the degradation of aromatic compounds, was investigated by proteome-wide label-free quantification.The data unveiled that entrance to the stationary phase did not involve an abrupt switch within the P. putida F1 proteome, but rather an ongoing adaptation that started already during the mid-exponential growth phase. The proteomic adaptations involved a clear increase in amino acid degradation capabilities and a loss of transcriptional as well as translational capacity. The final entrance to the stationary phase was accompanied by increased oxidative stress protection, although the stress and stationary sigma factor RpoS increased in abundance already during mid-exponential growth. The results show that it is important to consider significant sample variations when exponentially growing cultures are studied alone or compared across proteomic or transcriptomic literature. All MS data have been deposited in the ProteomeXchange with identifier PXD001219 (http://proteomecentral.proteomexchange.org/dataset/PXD001219).
Collapse
Affiliation(s)
- Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Heidi Nolsøe Danielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Reinhard Wimmer
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
34
|
Yan J, Zou W, Fang J, Huang X, Gao F, He Z, Zhang K, Zhao N. Eukaryote-like Ser/Thr protein kinase PrkA modulates sporulation via regulating the transcriptional factor σ(K) in Bacillus subtilis. Front Microbiol 2015; 6:382. [PMID: 25983726 PMCID: PMC4415436 DOI: 10.3389/fmicb.2015.00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/14/2015] [Indexed: 12/31/2022] Open
Abstract
Protein kinase A (PrkA), also known as AMP-activated protein kinase, functions as a serine/threonine protein kinase (STPK), has been shown to be involved in a variety of important biologic processes, including pathogenesis of many important diseases in mammals. However, the biological functions of PrkA are less known in prokaryote cells. Here, we explored the function of PrkA as well as its underlying molecular mechanisms using the model bacterium Bacillus subtilis168. When PrkA is inhibited by 9-β-D-arabinofuranosyladenine (ara-A) in the wild type strain or deleted in the ΔprkA mutant strain, we observed sporulation defects in B. subtilis 168, suggesting that PrkA functions as a sporulation-related protein. Transcriptional analysis using the lacZ reporter gene demonstrated that deletion of prkA significantly reduced the expression of the transcriptional factor σ(K) and its downstream genes. Complementation of sigK gene in prkA knockout mutant partially rescued the phenotype of ΔprkA, further supporting the hypothesis that the decreased σ(K) expression should be one of the reasons for the sporulation defect resulting from prkA disruption. Finally, our data confirmed that Hpr (ScoC) negatively controlled the expression of transcriptional factor σ(K), and thus PrkA accelerated sporulation and the expression of σ(K) by suppression of Hpr (ScoC). Taken together, our study discovered a novel function of the eukaryotic-like STPK PrkA in spore development as well as its underlying molecular mechanism in B. subtilis.
Collapse
Affiliation(s)
- Jinyuan Yan
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Wei Zou
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Juan Fang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Xiaowei Huang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Feng Gao
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Zeying He
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Keqin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University Kunming, China
| | - Ninghui Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical College Kunming, China
| |
Collapse
|
35
|
Misra SK, Moussan Désirée Aké F, Wu Z, Milohanic E, Cao TN, Cossart P, Deutscher J, Monnet V, Archambaud C, Henry C. Quantitative proteome analyses identify PrfA-responsive proteins and phosphoproteins in Listeria monocytogenes. J Proteome Res 2014; 13:6046-57. [PMID: 25383790 DOI: 10.1021/pr500929u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is a major mechanism of signal transduction in bacteria. Here, we analyzed the proteome and phosphoproteome of a wild-type strain of the food-borne pathogen Listeria monocytogenes that was grown in either chemically defined medium or rich medium containing glucose. We then compared these results with those obtained from an isogenic prfA* mutant that produced a constitutively active form of PrfA, the main transcriptional activator of virulence genes. In the prfA* mutant grown in rich medium, we identified 256 peptides that were phosphorylated on serine (S), threonine (T), or tyrosine (Y) residues, with a S/T/Y ratio of 155:75:12. Strikingly, we detected five novel phosphosites on the virulence protein ActA. This protein was known to be phosphorylated by a cellular kinase in the infected host, but phosphorylation by a listerial kinase had not previously been reported. Unexpectedly, SILAC experiments with the prfA* mutant grown in chemically defined medium revealed that, in addition to previously described PrfA-regulated proteins, several other proteins were significantly overproduced, among them were several proteins involved in purine biosynthesis. This work provides new information for our understanding of the correlation among protein phosphorylation, virulence mechanisms, and carbon metabolism.
Collapse
|
36
|
Selective pharmacologic inhibition of a PASTA kinase increases Listeria monocytogenes susceptibility to β-lactam antibiotics. Antimicrob Agents Chemother 2014; 58:4486-94. [PMID: 24867981 DOI: 10.1128/aac.02396-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
While β-lactam antibiotics are a critical part of the antimicrobial arsenal, they are frequently compromised by various resistance mechanisms, including changes in penicillin binding proteins of the bacterial cell wall. Genetic deletion of the penicillin binding protein and serine/threonine kinase-associated protein (PASTA) kinase in methicillin-resistant Staphylococcus aureus (MRSA) has been shown to restore β-lactam susceptibility. However, the mechanism remains unclear, and whether pharmacologic inhibition would have the same effect is unknown. In this study, we found that deletion or pharmacologic inhibition of the PASTA kinase in Listeria monocytogenes by the nonselective kinase inhibitor staurosporine results in enhanced susceptibility to both aminopenicillin and cephalosporin antibiotics. Resistance to vancomycin, another class of cell wall synthesis inhibitors, or antibiotics that inhibit protein synthesis was unaffected by staurosporine treatment. Phosphorylation assays with purified kinases revealed that staurosporine selectively inhibited the PASTA kinase of L. monocytogenes (PrkA). Importantly, staurosporine did not inhibit a L. monocytogenes kinase without a PASTA domain (Lmo0618) or the PASTA kinase from MRSA (Stk1). Finally, inhibition of PrkA with a more selective kinase inhibitor, AZD5438, similarly led to sensitization of L. monocytogenes to β-lactam antibiotics. Overall, these results suggest that pharmacologic targeting of PASTA kinases can increase the efficacy of β-lactam antibiotics.
Collapse
|
37
|
Canova MJ, Molle V. Bacterial serine/threonine protein kinases in host-pathogen interactions. J Biol Chem 2014; 289:9473-9. [PMID: 24554701 DOI: 10.1074/jbc.r113.529917] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.
Collapse
Affiliation(s)
- Marc J Canova
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, 34095 Montpellier Cedex 05, France
| | | |
Collapse
|
38
|
Paredi G, Sentandreu MA, Mozzarelli A, Fadda S, Hollung K, de Almeida AM. Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. J Proteomics 2013; 88:58-82. [DOI: 10.1016/j.jprot.2013.01.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/31/2013] [Indexed: 11/16/2022]
|
39
|
Pinto D, Santos MA, Chambel L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 2013; 41:61-76. [PMID: 23848175 DOI: 10.3109/1040841x.2013.794127] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Viable but nonculturable (VBNC) cells were recognized 30 years ago; and despite decades of research on the topic, most results are disperse and apparently incongruous. Since its description, a huge controversy arose regarding the ecological significance of this state: is it a degradation process without real significance for bacterial life cycles or is it an adaptive strategy of bacteria to cope with stressful conditions? In order to solve the molecular mechanisms of VBNC state induction and resuscitation, researchers in the field must be aware and overcome common issues delaying research progress. In this review, we discuss the intrinsic characteristic features of VBNC cells, the first clues on what is behind the VBNC state's induction, the models proposed for their resuscitation and the current methods to prove not only that cells are in VBNC state but also that they are able to resuscitate.
Collapse
Affiliation(s)
- Daniela Pinto
- Center for Biodiversity, Functional and Integrative Genomics (BioFIG), Faculty of Sciences, University of Lisbon , Lisbon , Portugal
| | | | | |
Collapse
|
40
|
Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol Lett 2013; 346:11-9. [PMID: 23731382 DOI: 10.1111/1574-6968.12189] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
In this review, we address some recent developments in the field of bacterial protein phosphorylation, focusing specifically on serine/threonine and tyrosine kinases. We present an overview of recent studies outlining the scope of physiological processes that are regulated by phosphorylation, ranging from cell cycle, growth, cell morphology, to metabolism, developmental phenomena, and virulence. Specific emphasis is placed on Mycobacterium tuberculosis as a showcase organism for serine/threonine kinases, and Bacillus subtilis to illustrate the importance of protein phosphorylation in developmental processes. We argue that bacterial serine/threonine and tyrosine kinases have a distinctive feature of phosphorylating multiple substrates and might thus represent integration nodes in the signaling network. Some open questions regarding the evolutionary benefits of relaxed substrate selectivity of these kinases are treated, as well as the notion of nonfunctional 'background' phosphorylation of cellular proteins. We also argue that phosphorylation events for which an immediate regulatory effect is not clearly established should not be dismissed as unimportant, as they may have a role in cross-talk with other post-translational modifications. Finally, recently developed methods for studying protein phosphorylation networks in bacteria are briefly discussed.
Collapse
|
41
|
Schleker S, Ananthasubramanian S, Klein‐Seetharaman J, Ganapathiraju MK. Prediction of Intra‐ and Interspecies Protein–Protein Interactions Facilitating Systems Biology Studies. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2013:21-53. [DOI: 10.1002/9783527648207.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Fuchs TM, Eisenreich W, Kern T, Dandekar T. Toward a Systemic Understanding of Listeria monocytogenes Metabolism during Infection. Front Microbiol 2012; 3:23. [PMID: 22347216 PMCID: PMC3271275 DOI: 10.3389/fmicb.2012.00023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/13/2012] [Indexed: 02/03/2023] Open
Abstract
Listeria monocytogenes is a foodborne human pathogen that can cause invasive infection in susceptible animals and humans. For proliferation within hosts, this facultative intracellular pathogen uses a reservoir of specific metabolic pathways, transporter, and enzymatic functions whose expression requires the coordinated activity of a complex regulatory network. The highly adapted metabolism of L. monocytogenes strongly depends on the nutrient composition of various milieus encountered during infection. Transcriptomic and proteomic studies revealed the spatial-temporal dynamic of gene expression of this pathogen during replication within cultured cells or in vivo. Metabolic clues are the utilization of unusual C(2)- and C(3)-bodies, the metabolism of pyruvate, thiamine availability, the uptake of peptides, the acquisition or biosynthesis of certain amino acids, and the degradation of glucose-phosphate via the pentose phosphate pathway. These examples illustrate the interference of in vivo conditions with energy, carbon, and nitrogen metabolism, thus affecting listerial growth. The exploitation, analysis, and modeling of the available data sets served as a first attempt to a systemic understanding of listerial metabolism during infection. L. monocytogenes might serve as a model organism for systems biology of a Gram-positive, facultative intracellular bacterium.
Collapse
Affiliation(s)
- Thilo M. Fuchs
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität MünchenFreising, Germany
- Lehrstuhl für Mikrobielle Ökologie, Department Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenFreising, Germany
| | | | - Tanja Kern
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität MünchenFreising, Germany
| | - Thomas Dandekar
- Abteilung Bioinformatik, Theodor-Boveri-Institut (Biozentrum), Universität WürzburgWürzburg, Germany
| |
Collapse
|
43
|
Burnside K, Rajagopal L. Regulation of prokaryotic gene expression by eukaryotic-like enzymes. Curr Opin Microbiol 2012; 15:125-31. [PMID: 22221896 DOI: 10.1016/j.mib.2011.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
A growing body of evidence indicates that serine/threonine kinases (STKs) and phosphatases (STPs) regulate gene expression in prokaryotic organisms. As prokaryotic STKs and STPs are not DNA binding proteins, regulation of gene expression is accomplished through post-translational modification of their targets. These include two-component response regulators, DNA binding proteins and proteins that mediate transcription and translation. This review summarizes our current understanding of how STKs and STPs mediate gene expression in prokaryotes. Further studies to identify environmental signals that trigger the signaling cascade and elucidation of mechanisms that regulate crosstalk between eukaryotic-like signaling enzymes, two-component systems, and components of the transcriptional and translational machinery will facilitate a greater understanding of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, WA 98101-1304, United States
| | | |
Collapse
|
44
|
Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol 2011; 6:747-61. [PMID: 21797690 DOI: 10.2217/fmb.11.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-1304, USA
| | | |
Collapse
|
45
|
Misra SK, Milohanic E, Aké F, Mijakovic I, Deutscher J, Monnet V, Henry C. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence. Proteomics 2011; 11:4155-65. [PMID: 21956863 DOI: 10.1002/pmic.201100259] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/19/2011] [Accepted: 08/04/2011] [Indexed: 11/05/2022]
Abstract
Phosphorylation is the most common and widely studied post-translational protein modification in bacteria. It plays an important role in all kinds of cellular processes and controls key regulatory mechanisms, including virulence in certain pathogens. To gain insight into the role of protein phosphorylation in the pathogen Listeria monocytogenes, the serine (Ser), threonine (Thr) and tyrosine (Tyr) phosphoproteome of this bacterium was determined. We used the "gel free" proteomic approach with high accuracy mass spectrometry after enrichment of phosphopeptides. A total of 143 sites of phosphorylation were clearly identified, on 155 unique peptides of 112 phosphoproteins. The Ser/Thr/Tyr phosphorylation site distribution was 93:43:7. All identified phosphopeptides are monophosphorylated, except one and many identified phosphoproteins are related to virulence, translation, phosphoenolpyruvate:sugar phosphotransferase system, glycolysis and stress response. A description of these phosphoproteins is provided together with a comparison of the phosphosites in the L. monocytogenes proteins and in their homologues of other bacteria for which the phosphoproteome has been determined. Compared with the previous studies, we noticed a more extended conservation of the phosphorylation sites in glycolytic enzymes as well as ribosomal proteins.
Collapse
|