1
|
Cao X, Tang X, Feng C, Lin J, Zhang H, Liu Q, Zheng Q, Zhuang H, Liu X, Li H, Khan NU, Shen L. A Systematic Investigation of Complement and Coagulation-Related Protein in Autism Spectrum Disorder Using Multiple Reaction Monitoring Technology. Neurosci Bull 2023; 39:1623-1637. [PMID: 37031449 PMCID: PMC10603015 DOI: 10.1007/s12264-023-01055-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/02/2023] [Indexed: 04/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the common neurodevelopmental disorders in children. Its etiology and pathogenesis are poorly understood. Previous studies have suggested potential changes in the complement and coagulation pathways in individuals with ASD. In this study, using multiple reactions monitoring proteomic technology, 16 of the 33 proteins involved in this pathway were identified as differentially-expressed proteins in plasma between children with ASD and controls. Among them, CFHR3, C4BPB, C4BPA, CFH, C9, SERPIND1, C8A, F9, and F11 were found to be altered in the plasma of children with ASD for the first time. SERPIND1 expression was positively correlated with the CARS score. Using the machine learning method, we obtained a panel composed of 12 differentially-expressed proteins with diagnostic potential for ASD. We also reviewed the proteins changed in this pathway in the brain and blood of patients with ASD. The complement and coagulation pathways may be activated in the peripheral blood of children with ASD and play a key role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qiong Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Haiying Li
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, 550002, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Willems E, Alkema W, Keizer-Garritsen J, Suppers A, van der Flier M, Philipsen RHLA, van den Heuvel LP, Volokhina E, van der Molen RG, Herberg JA, Levin M, Wright VJ, Ahout IML, Ferwerda G, Emonts M, Boeddha NP, Rivero-Calle I, Torres FM, Wessels HJCT, de Groot R, van Gool AJ, Gloerich J, de Jonge MI. Biosynthetic homeostasis and resilience of the complement system in health and infectious disease. EBioMedicine 2019; 45:303-313. [PMID: 31262714 PMCID: PMC6642076 DOI: 10.1016/j.ebiom.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The complement system is a central component of the innate immune system. Constitutive biosynthesis of complement proteins is essential for homeostasis. Dysregulation as a consequence of genetic or environmental cues can lead to inflammatory syndromes or increased susceptibility to infection. However, very little is known about steady state levels in children or its kinetics during infection. METHODS With a newly developed multiplex mass spectrometry-based method we analyzed the levels of 32 complement proteins in healthy individuals and in a group of pediatric patients infected with bacterial or viral pathogens. FINDINGS In plasma from young infants we found reduced levels of C4BP, ficolin-3, factor B, classical pathway components C1QA, C1QB, C1QC, C1R, and terminal pathway components C5, C8, C9, as compared to healthy adults; whereas the majority of complement regulating (inhibitory) proteins reach adult levels at very young age. Both viral and bacterial infections in children generally lead to a slight overall increase in complement levels, with some exceptions. The kinetics of complement levels during invasive bacterial infections only showed minor changes, except for a significant increase and decrease of CRP and clusterin, respectively. INTERPRETATION The combination of lower levels of activating and higher levels of regulating complement proteins, would potentially raise the threshold of activation, which might lead to suppressed complement activation in the first phase of life. There is hardly any measurable complement consumption during bacterial or viral infection. Altogether, expression of the complement proteins appears surprisingly stable, which suggests that the system is continuously replenished. FUND: European Union's Horizon 2020, project PERFORM, grant agreement No. 668303.
Collapse
Affiliation(s)
- Esther Willems
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.
| | - Wynand Alkema
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenneke Keizer-Garritsen
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Anouk Suppers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ria H L A Philipsen
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lambert P van den Heuvel
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Volokhina
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Renate G van der Molen
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jethro A Herberg
- Department of Medicine, Section for Paediatrics, Imperial College London, London, UK
| | - Michael Levin
- Department of Medicine, Section for Paediatrics, Imperial College London, London, UK
| | - Victoria J Wright
- Department of Medicine, Section for Paediatrics, Imperial College London, London, UK
| | - Inge M L Ahout
- Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke Emonts
- Department of Paediatric Immunology, Infectious Diseases and Allergy, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; NIHR Newcastle Biomedical Research Centre based at Newcastle upon Tyne Hospitals NHS Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Navin P Boeddha
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Galicia, Spain
| | - Federico Martinon Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Galicia, Spain
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Rezeli M, Sjödin K, Lindberg H, Gidlöf O, Lindahl B, Jernberg T, Spaak J, Erlinge D, Marko-Varga G. Quantitation of 87 Proteins by nLC-MRM/MS in Human Plasma: Workflow for Large-Scale Analysis of Biobank Samples. J Proteome Res 2017; 16:3242-3254. [PMID: 28738677 DOI: 10.1021/acs.jproteome.7b00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A multiple reaction monitoring (MRM) assay was developed for precise quantitation of 87 plasma proteins including the three isoforms of apolipoprotein E (APOE) associated with cardiovascular diseases using nanoscale liquid chromatography separation and stable isotope dilution strategy. The analytical performance of the assay was evaluated and we found an average technical variation of 4.7% in 4-5 orders of magnitude dynamic range (≈0.2 mg/L to 4.5 g/L) from whole plasma digest. Here, we report a complete workflow, including sample processing adapted to 96-well plate format and normalization strategy for large-scale studies. To further investigate the MS-based quantitation the amount of six selected proteins was measured by routinely used clinical chemistry assays as well and the two methods showed excellent correlation with high significance (p-value < 10e-5) for the six proteins, in addition for the cardiovascular predictor factor, APOB: APOA1 ratio (r = 0.969, p-value < 10e-5). Moreover, we utilized the developed assay for screening of biobank samples from patients with myocardial infarction and performed the comparative analysis of patient groups with STEMI (ST- segment elevation myocardial infarction), NSTEMI (non ST- segment elevation myocardial infarction) and type-2 AMI (type-2 myocardial infarction) patients.
Collapse
Affiliation(s)
- Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University , BMC D13, Lund SE-221 84, Sweden
| | - Karin Sjödin
- Department of Drug Metabolism, H Lundbeck & Co AS , Copenhagen, DK-2500, Denmark
| | - Henrik Lindberg
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University , BMC D13, Lund SE-221 84, Sweden
| | - Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital , Lund, SE-221 85, Sweden
| | - Bertil Lindahl
- Department of Medical Sciences, Cardiology & Uppsala Clinical Research Center, Uppsala University , Uppsala, SE-751 83, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet , Stockholm, SE-182 88, Sweden
| | - Jonas Spaak
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet , Stockholm, SE-182 88, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital , Lund, SE-221 85, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University , BMC D13, Lund SE-221 84, Sweden
| |
Collapse
|
4
|
Lehmann S, Brede C, Lescuyer P, Cocho JA, Vialaret J, Bros P, Delatour V, Hirtz C. Clinical mass spectrometry proteomics (cMSP) for medical laboratory: What does the future hold? Clin Chim Acta 2017; 467:51-58. [DOI: 10.1016/j.cca.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
|
5
|
Percy AJ, Yang J, Chambers AG, Borchers CH. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards. Methods Mol Biol 2016; 1410:1-21. [PMID: 26867735 DOI: 10.1007/978-1-4939-3524-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Absolute quantitative strategies are emerging as a powerful and preferable means of deriving concentrations in biological samples for systems biology applications. Method development is driven by the need to establish new-and validate current-protein biomarkers of high-to-low abundance for clinical utility. In this chapter, we describe a methodology involving two-dimensional (2D) reversed-phase liquid chromatography (RPLC), operated under alkaline and acidic pH conditions, combined with multiple reaction monitoring (MRM)-mass spectrometry (MS) (also called selected reaction monitoring (SRM)-MS) and a complex mixture of stable isotope-labeled standard (SIS) peptides, to quantify a broad and diverse panel of 253 proteins in human blood plasma. The quantitation range spans 8 orders of magnitude-from 15 mg/mL (for vitamin D-binding protein) to 450 pg/mL (for protein S100-B)-and includes 31 low-abundance proteins (defined as being <10 ng/mL) of potential disease relevance. The method is designed to assess candidates at the discovery and/or verification phases of the biomarker pipeline and can be adapted to examine smaller or alternate panels of proteins for higher sample throughput. Also detailed here is the application of our recently developed software tool-Qualis-SIS-for protein quantitation (via regression analysis of standard curves) and quality assessment of the resulting data. Overall, this chapter provides the blueprint for the replication of this quantitative proteomic method by proteomic scientists of all skill levels.
Collapse
Affiliation(s)
- Andrew J Percy
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada.
| | - Juncong Yang
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Andrew G Chambers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
6
|
Percy AJ, Yang J, Chambers AG, Mohammed Y, Miliotis T, Borchers CH. Protocol for Standardizing High-to-Moderate Abundance Protein Biomarker Assessments Through an MRM-with-Standard-Peptides Quantitative Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:515-530. [DOI: 10.1007/978-3-319-41448-5_24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Gianazza E, Tremoli E, Banfi C. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases. Expert Rev Proteomics 2014; 11:771-88. [PMID: 25400095 DOI: 10.1586/14789450.2014.947966] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.
Collapse
Affiliation(s)
- Erica Gianazza
- Laboratory of Cell Biology and Biochemistry of Atherothrombosis, Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138 Milan, Italy
| | | | | |
Collapse
|
8
|
Rezeli M, Végvári Á, Silajdžić E, Björkqvist M, Tabrizi SJ, Laurell T, Marko-Varga G. Inflammatory markers in Huntington's disease plasma—A robust nanoLC–MRM-MS assay development. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Pre-analytical and analytical variability in absolute quantitative MRM-based plasma proteomic studies. Bioanalysis 2013; 5:2837-56. [DOI: 10.4155/bio.13.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Quantitative plasma proteomics, through the use of targeted MRM-MS and isotopically labeled standards, is emerging as a popular technique to address biological- and biomedical-centered queries. High precision and accuracy are essential in such measurements, particularly in protein biomarker research where translation to the clinic is sought. Standardized procedures and routine performance evaluation of all stages of the workflow (both pre-analytical and analytical) are therefore imperative to satisfy these requisites and enable high inter-laboratory reproducibility and transferability. In this review, we first discuss the pre-analytical and analytical variables that can affect the precision and accuracy of ‘absolute’ quantitative plasma proteomic measurements. Proposed strategies to limit such variability will then be highlighted and unmet needs for future exploration will be noted. Although there is no way to conduct a truly comprehensive review on this broad, rapidly changing topic, we have highlighted key aspects and included references to review articles on various sub-topics.
Collapse
|
10
|
Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:917-26. [PMID: 23806606 DOI: 10.1016/j.bbapap.2013.06.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/27/2013] [Accepted: 06/14/2013] [Indexed: 11/23/2022]
Abstract
Accurate and rapid protein quantitation is essential for screening biomarkers for disease stratification and monitoring, and to validate the hundreds of putative markers in human biofluids, including blood plasma. An analytical method that utilizes stable isotope-labeled standard (SIS) peptides and selected/multiple reaction monitoring-mass spectrometry (SRM/MRM-MS) has emerged as a promising technique for determining protein concentrations. This targeted approach has analytical merit, but its true potential (in terms of sensitivity and multiplexing) has yet to be realized. Described herein is a method that extends the multiplexing ability of the MRM method to enable the quantitation 142 high-to-moderate abundance proteins (from 31mg/mL to 44ng/mL) in undepleted and non-enriched human plasma in a single run. The proteins have been reported to be associated to a wide variety of non-communicable diseases (NCDs), from cardiovascular disease (CVD) to diabetes. The concentrations of these proteins in human plasma are inferred from interference-free peptides functioning as molecular surrogates (2 peptides per protein, on average). A revised data analysis strategy, involving the linear regression equation of normal control plasma, has been instituted to enable the facile application to patient samples, as demonstrated in separate nutrigenomics and CVD studies. The exceptional robustness of the LC/MS platform and the quantitative method, as well as its high throughput, makes the assay suitable for application to patient samples for the verification of a condensed or complete protein panel. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
|
11
|
van den Broek I, Niessen WM, van Dongen WD. Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 929:161-79. [DOI: 10.1016/j.jchromb.2013.04.030] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/15/2013] [Accepted: 04/20/2013] [Indexed: 12/18/2022]
|
12
|
Development of an MRM assay panel with application to biobank samples from patients with myocardial infarction. J Proteomics 2013; 87:16-25. [PMID: 23707545 DOI: 10.1016/j.jprot.2013.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/30/2013] [Accepted: 05/15/2013] [Indexed: 11/20/2022]
Abstract
UNLABELLED As part of a Swedish national cardiological research initiative, the development of a quantitative MRM assay is reported for the quantification of eleven putative cardiovascular disease markers. Within the study, patient samples from the LUNDHEARTGENE biobank were processed and nanoLC-MS/MS analysis was performed together with a stable isotope dilution strategy for absolute quantification of the target proteins. Excellent linear regressions were achieved for 9 of the 11 peptides with LOQ ranged in the attomolar range. We have utilized the assay for the screening of plasma samples from patients with chest pain, and performed a comparative analysis of patients with ST-segment elevation myocardial infarction and chest pain due to other causes. The assay demonstrates high reproducibility and correlate with clinical findings. Strong correlations were found for several of the apolipoproteins and their respective lipid subfractions (LDL, HDL or triglycerides). APOC1, APOC2 and APOE were elevated in patients with STEMI. BIOLOGICAL SIGNIFICANCE An MRM assay were developed for putative cardiovascular disease markers as target proteins, and applied to biobanking sample material. The comparative analysis of patients with ST-segment elevation myocardial infarction and chest pain due to other causes showed elevated levels of APOC1, APOC2 and APOE in patients with STEMI. These observations raise interesting novel hypotheses about the role of apolipoproteins C1, C2 and E in the pathophysiology of acute myocardial infarction, which merits further studies.
Collapse
|
13
|
Metrology for metalloproteins—where are we now, where are we heading? Anal Bioanal Chem 2013; 405:5697-723. [DOI: 10.1007/s00216-013-6933-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 01/10/2023]
|
14
|
Shi T, Su D, Liu T, Tang K, Camp DG, Qian WJ, Smith RD. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics 2012; 12:1074-92. [PMID: 22577010 PMCID: PMC3375056 DOI: 10.1002/pmic.201100436] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/12/2012] [Indexed: 12/13/2022]
Abstract
Selected reaction monitoring (SRM) - also known as multiple reaction monitoring (MRM) - has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for, e.g. detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein, we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications, as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low- to sub-ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Dian Su
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Keqi Tang
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - David G. Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|