1
|
Shao X, Tian M, Yin J, Duan H, Tian Y, Wang H, Xia C, Wang Z, Zhu Y, Wang Y, Chaihu L, Tan M, Wang H, Huang Y, Wang J, Wang G. Biofunctionalized dissolvable hydrogel microbeads enable efficient characterization of native protein complexes. Nat Commun 2024; 15:8633. [PMID: 39366952 PMCID: PMC11452662 DOI: 10.1038/s41467-024-52948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The characterization of protein complex is vital for unraveling biological mechanisms in various life processes. Despite advancements in biophysical tools, the capture of non-covalent complexes and deciphering of their biochemical composition continue to present challenges for low-input samples. Here we introduce SNAP-MS, a Stationary-phase-dissolvable Native Affinity Purification and Mass Spectrometric characterization strategy. It allows for highly efficient purification and characterization from inputs at the pico-mole level. SNAP-MS replaces traditional elution with matrix dissolving during the recovery of captured targets, enabling the use of high-affinity bait-target pairs and eliminates interstitial voids. The purified intact protein complexes are compatible with native MS, which provides structural information including stoichiometry, topology, and distribution of proteoforms, size variants and interaction states. An algorithm utilizes the bait as a charge remover and mass corrector significantly enhances the accuracy of analyzing heterogeneously glycosylated complexes. With a sample-to-data time as brief as 2 hours, SNAP-MS demonstrates considerable versatility in characterizing native complexes from biological samples, including blood samples.
Collapse
Affiliation(s)
- Xinyang Shao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Changping Laboratory, Beijing, China
| | - Meng Tian
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Junlong Yin
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haifeng Duan
- CYGNUS Bioscience (Beijing) Co. Ltd, Beijing, China
| | - Ye Tian
- Changping Laboratory, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, China
| | - Changsheng Xia
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, China
| | - Ziwei Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanxi Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Yifan Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Lingxiao Chaihu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Chemistry & Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Minjie Tan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongwei Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yanyi Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Changping Laboratory, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Jianbin Wang
- Changping Laboratory, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Guanbo Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
| |
Collapse
|
2
|
Kirsch ZJ, Ashby J, Vachet RW. Investigating Protein-Nucleic Acid Binding Interactions with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2272-2275. [PMID: 39208253 PMCID: PMC11497156 DOI: 10.1021/jasms.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nucleic acids are important biomolecules that facilitate numerous cellular functions and have in recent years become promising candidates for treating disease. Consequently, there is a need for methods to characterize protein interactions with these molecules. Here, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling-mass spectrometry (CL-MS) can provide structural information for protein-nucleic acid binding by characterizing the binding sites of two DNA aptamers specific to thrombin. Reductions in thrombin labeling are observed at the pair's binding interfaces. Furthermore, we find that binding of the aptamers causes changes in labeling at residues in the thrombin active site and known exosites for each aptamer, showcasing the sensitivity of DEPC CL-MS to significant allosteric changes.
Collapse
Affiliation(s)
- Zachary J. Kirsch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jonathan Ashby
- Department of Chemistry, Trinity College, Hartford, Connecticut 06106, United States
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Chu LC, Christopoulou N, McCaughan H, Winterbourne S, Cazzola D, Wang S, Litvin U, Brunon S, Harker PJ, McNae I, Granneman S. pyRBDome: a comprehensive computational platform for enhancing RNA-binding proteome data. Life Sci Alliance 2024; 7:e202402787. [PMID: 39079742 PMCID: PMC11289467 DOI: 10.26508/lsa.202402787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
High-throughput proteomics approaches have revolutionised the identification of RNA-binding proteins (RBPome) and RNA-binding sequences (RBDome) across organisms. Yet, the extent of noise, including false positives, associated with these methodologies, is difficult to quantify as experimental approaches for validating the results are generally low throughput. To address this, we introduce pyRBDome, a pipeline for enhancing RNA-binding proteome data in silico. It aligns the experimental results with RNA-binding site (RBS) predictions from distinct machine-learning tools and integrates high-resolution structural data when available. Its statistical evaluation of RBDome data enables quick identification of likely genuine RNA-binders in experimental datasets. Furthermore, by leveraging the pyRBDome results, we have enhanced the sensitivity and specificity of RBS detection through training new ensemble machine-learning models. pyRBDome analysis of a human RBDome dataset, compared with known structural data, revealed that although UV-cross-linked amino acids were more likely to contain predicted RBSs, they infrequently bind RNA in high-resolution structures. This discrepancy underscores the limitations of structural data as benchmarks, positioning pyRBDome as a valuable alternative for increasing confidence in RBDome datasets.
Collapse
Affiliation(s)
- Liang-Cui Chu
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Niki Christopoulou
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Hugh McCaughan
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Sophie Winterbourne
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Davide Cazzola
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | - Shichao Wang
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Ulad Litvin
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Salomé Brunon
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | - Patrick Jb Harker
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Iain McNae
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Sander Granneman
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Gizardin-Fredon H, Santo PE, Chagot ME, Charpentier B, Bandeiras TM, Manival X, Hernandez-Alba O, Cianférani S. Denaturing mass photometry for rapid optimization of chemical protein-protein cross-linking reactions. Nat Commun 2024; 15:3516. [PMID: 38664367 PMCID: PMC11045720 DOI: 10.1038/s41467-024-47732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chemical cross-linking reactions (XL) are an important strategy for studying protein-protein interactions (PPIs), including low abundant sub-complexes, in structural biology. However, choosing XL reagents and conditions is laborious and mostly limited to analysis of protein assemblies that can be resolved using SDS-PAGE. To overcome these limitations, we develop here a denaturing mass photometry (dMP) method for fast, reliable and user-friendly optimization and monitoring of chemical XL reactions. The dMP is a robust 2-step protocol that ensures 95% of irreversible denaturation within only 5 min. We show that dMP provides accurate mass identification across a broad mass range (30 kDa-5 MDa) along with direct label-free relative quantification of all coexisting XL species (sub-complexes and aggregates). We compare dMP with SDS-PAGE and observe that, unlike the benchmark, dMP is time-efficient (3 min/triplicate), requires significantly less material (20-100×) and affords single molecule sensitivity. To illustrate its utility for routine structural biology applications, we show that dMP affords screening of 20 XL conditions in 1 h, accurately identifying and quantifying all coexisting species. Taken together, we anticipate that dMP will have an impact on ability to structurally characterize more PPIs and macromolecular assemblies, expected final complexes but also sub-complexes that form en route.
Collapse
Affiliation(s)
- Hugo Gizardin-Fredon
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Paulo E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | | | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France.
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France.
| |
Collapse
|
5
|
Panda M, Kalita E, Singh S, Rao A, Prajapati VK. Application of functional proteomics in understanding RNA virus-mediated infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:301-325. [PMID: 38220429 DOI: 10.1016/bs.apcsb.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Together with the expansion of genome sequencing research, the number of protein sequences whose function is yet unknown is increasing dramatically. The primary goals of functional proteomics, a developing area of study in the realm of proteomic science, are the elucidation of the biological function of unidentified proteins and the molecular description of cellular systems at the molecular level. RNA viruses have emerged as the cause of several human infectious diseases with large morbidity and fatality rates. The introduction of high-throughput sequencing tools and genetic-based screening approaches over the last few decades has enabled researchers to find previously unknown and perplexing elements of RNA virus replication and pathogenesis on a scale never feasible before. Viruses, on the other hand, frequently disrupt cellular proteostasis, macromolecular complex architecture or stoichiometry, and post-translational changes to take over essential host activities. Because of these consequences, structural and global protein and proteoform monitoring is highly necessiated. Mass spectrometry (MS) has the potential to elucidate key details of virus-host interactions and speed up the identification of antiviral targets, giving precise data on the stoichiometry of cellular and viral protein complexes as well as mechanistic insights, has lately emerged as a key part of the RNA virus biology toolbox as a functional proteomics approach. Affinity-based techniques are primarily employed to identify interacting proteins in stable complexes in living organisms. A protein's biological role is strongly suggested by its relationship with other members of a certain protein complex that is involved in a particular process. With a particular emphasis on the most recent advancements in defining host responses and their translational implications to uncover novel tractable antiviral targets, this chapter provides insight on several functional proteomics techniques in RNA virus biology.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India; Department of Neurology. Experimental Research in Stroke and Inflammation (ERSI),University Medical Center Hamburg-Eppendorf Martinistraße Hamburg, Germany
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
6
|
Wicke D, Meißner J, Warneke R, Elfmann C, Stülke J. Understudied proteins and understudied functions in the model bacterium Bacillus subtilis-A major challenge in current research. Mol Microbiol 2023. [PMID: 36882621 DOI: 10.1111/mmi.15053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Model organisms such as the Gram-positive bacterium Bacillus subtilis have been studied intensively for decades. However, even for model organisms, no function has been identified for about one fourth of all proteins. It has recently been realized that such understudied proteins as well as poorly studied functions set a limitation to our understanding of the requirements for cellular life, and the Understudied Proteins Initiative has been launched. Of poorly studied proteins, those that are strongly expressed are likely to be important to the cell and should therefore be considered high priority in further studies. Since the functional analysis of unknown proteins can be extremely laborious, a minimal knowledge is required prior to targeted functional studies. In this review, we discuss strategies to obtain such a minimal annotation, for example, from global interaction, expression, or localization studies. We present a set of 41 highly expressed and poorly studied proteins of B. subtilis. Several of these proteins are thought or known to bind RNA and/or the ribosome, some may control the metabolism of B. subtilis, and another subset of particularly small proteins may act as regulatory elements to control the expression of downstream genes. Moreover, we discuss the challenges of poorly studied functions with a focus on RNA-binding proteins, amino acid transport, and the control of metabolic homeostasis. The identification of the functions of the selected proteins not only will strongly advance our knowledge on B. subtilis, but also on other organisms since many of the proteins are conserved in many groups of bacteria.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Janek Meißner
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Christoph Elfmann
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| |
Collapse
|
7
|
Sarnowski CP, Bikaki M, Leitner A. Cross-linking and mass spectrometry as a tool for studying the structural biology of ribonucleoproteins. Structure 2022; 30:441-461. [PMID: 35366400 DOI: 10.1016/j.str.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Cross-linking and mass spectrometry (XL-MS) workflows represent an increasingly popular technique for low-resolution structural studies of macromolecular complexes. Cross-linking reactions take place in the solution state, capturing contact sites between components of a complex that represent the native, functionally relevant structure. Protein-protein XL-MS protocols are widely adopted, providing precise localization of cross-linking sites to single amino acid positions within a pair of cross-linked peptides. In contrast, protein-RNA XL-MS workflows are evolving rapidly and differ in their ability to localize interaction regions within the RNA sequence. Here, we review protein-protein and protein-RNA XL-MS workflows, and discuss their applications in studies of protein-RNA complexes. The examples highlight the complementary value of XL-MS in structural studies of protein-RNA complexes, where more established high-resolution techniques might be unable to produce conclusive data.
Collapse
Affiliation(s)
- Chris P Sarnowski
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland; Systems Biology PhD Program, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland.
| |
Collapse
|
8
|
Götze M, Sarnowski CP, de Vries T, Knörlein A, Allain FHT, Hall J, Aebersold R, Leitner A. Single Nucleotide Resolution RNA-Protein Cross-Linking Mass Spectrometry: A Simple Extension of the CLIR-MS Workflow. Anal Chem 2021; 93:14626-14634. [PMID: 34714631 PMCID: PMC8581962 DOI: 10.1021/acs.analchem.1c02384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
RNA–protein
interactions mediate many intracellular processes.
CLIR-MS (cross-linking of isotope-labeled RNA and tandem mass spectrometry)
allows the identification of RNA–protein interaction sites
at single nucleotide/amino acid resolution in a single experiment.
Using isotopically labeled RNA segments for UV-light-induced cross-linking
generates characteristic isotope patterns that constrain the sequence
database searches, increasing spatial resolution. Whereas the use
of segmentally isotopically labeled RNA is effective, it is technically
involved and not applicable in some settings, e.g., in cell or tissue
samples. Here we introduce an extension of the CLIR-MS workflow that
uses unlabeled RNA during cross-linking and subsequently adds an isotopic
label during sample preparation for MS analysis. After RNase and protease
digests of a cross-linked complex, the nucleic acid part of a peptide–RNA
conjugate is labeled using the enzyme T4 polynucleotide kinase and
a 1:1 mixture of heavy 18O4-γ-ATP and
light ATP. In this simple, one-step reaction, three heavy oxygen atoms
are transferred from the γ-phosphate to the 5′-end of
the RNA, introducing an isotopic shift of 6.01 Da that is detectable
by mass spectrometry. We applied this approach to the RNA recognition
motif (RRM) of the protein FOX1 in complex with its cognate binding
substrate, FOX-binding element (FBE) RNA. We also labeled a single
phosphate within an RNA and unambiguously determined the cross-linking
site of the FOX1-RRM binding to FBE at single residue resolution on
the RNA and protein level and used differential ATP labeling for relative
quantification based on isotope dilution. Data are available via ProteomeXchange
with the identifier PXD024010.
Collapse
Affiliation(s)
- Michael Götze
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Chris P Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich 8093, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich 8093, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| |
Collapse
|
9
|
Tang J, Zhao W, Hendricks NG, Zhao L. High-Resolution Mapping of Amino Acid Residues in DNA-Protein Cross-Links Enabled by Ribonucleotide-Containing DNA. Anal Chem 2021; 93:13398-13406. [PMID: 34559515 DOI: 10.1021/acs.analchem.1c03481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA-protein cross-links have broad applications in mapping DNA-protein interactions and provide structural insights into macromolecular structures. However, high-resolution mapping of DNA-interacting amino acid residues with tandem mass spectrometry remains challenging due to difficulties in sample preparation and data analysis. Herein, we developed a method for identifying cross-linking amino residues in DNA-protein cross-links at single amino acid resolution. We leveraged the alkaline lability of ribonucleotides and designed ribonucleotide-containing DNA to produce structurally defined nucleic acid-peptide cross-links under our optimized ribonucleotide cleavage conditions. The structurally defined oligonucleotide-peptide heteroconjugates improved ionization, reduced the database search space, and facilitated the identification of cross-linking residues in peptides. We applied the workflow to identifying abasic (AP) site-interacting residues in human mitochondrial transcription factor A (TFAM)-DNA cross-links. With sub-nmol sample input, we obtained high-quality fragmentation spectra for nucleic acid-peptide cross-links and identified 14 cross-linked lysine residues with the home-built AP_CrosslinkFinder program. Semi-quantification based on integrated peak areas revealed that K186 of TFAM is the major cross-linking residue, consistent with K186 being the closest (to the AP modification) lysine residue in solved TFAM:DNA crystal structures. Additional cross-linking lysine residues (K69, K76, K136, K154) support the dynamic characteristics of TFAM:DNA complexes. Overall, our combined workflow using ribonucleotide as a chemically cleavable DNA modification together with optimized sample preparation and data analysis offers a simple yet powerful approach for mapping cross-linking sites in DNA-protein cross-links. The method is amendable to other chemical or photo-cross-linking systems and can be extended to complex biological samples.
Collapse
Affiliation(s)
- Jin Tang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Wenxin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Nathan G Hendricks
- Proteomics Core, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521, United States
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States.,Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
10
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
11
|
Simanjuntak Y, Schamoni-Kast K, Grün A, Uetrecht C, Scaturro P. Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. Viruses 2021; 13:668. [PMID: 33924391 PMCID: PMC8070632 DOI: 10.3390/v13040668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
RNA viruses cause a wide range of human diseases that are associated with high mortality and morbidity. In the past decades, the rise of genetic-based screening methods and high-throughput sequencing approaches allowed the uncovering of unique and elusive aspects of RNA virus replication and pathogenesis at an unprecedented scale. However, viruses often hijack critical host functions or trigger pathological dysfunctions, perturbing cellular proteostasis, macromolecular complex organization or stoichiometry, and post-translational modifications. Such effects require the monitoring of proteins and proteoforms both on a global scale and at the structural level. Mass spectrometry (MS) has recently emerged as an important component of the RNA virus biology toolbox, with its potential to shed light on critical aspects of virus-host perturbations and streamline the identification of antiviral targets. Moreover, multiple novel MS tools are available to study the structure of large protein complexes, providing detailed information on the exact stoichiometry of cellular and viral protein complexes and critical mechanistic insights into their functions. Here, we review top-down and bottom-up mass spectrometry-based approaches in RNA virus biology with a special focus on the most recent developments in characterizing host responses, and their translational implications to identify novel tractable antiviral targets.
Collapse
Affiliation(s)
- Yogy Simanjuntak
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| | - Kira Schamoni-Kast
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| | - Alice Grün
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Pietro Scaturro
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| |
Collapse
|
12
|
Gail EH, Shah AD, Schittenhelm RB, Davidovich C. crisscrosslinkeR: identification and visualization of protein–RNA and protein–protein interactions from crosslinking mass spectrometry. Bioinformatics 2021; 36:5530-5532. [PMID: 33346827 DOI: 10.1093/bioinformatics/btaa1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Summary
Unbiased detection of protein–protein and protein–RNA interactions within ribonucleoprotein complexes are enabled through crosslinking followed by mass spectrometry. Yet, different methods detect different types of molecular interactions and therefore require the usage of different software packages with limited compatibility. We present crisscrosslinkeR, an R package that maps both protein–protein and protein–RNA interactions detected by different types of approaches for crosslinking with mass spectrometry. crisscrosslinkeR produces output files that are compatible with visualization using popular software packages for the generation of publication-quality figures.
Availability and implementation
crisscrosslinkeR is a free and open-source package, available through GitHub: github.com/egmg726/crisscrosslinker.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Victoria 3800, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Anup D Shah
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Victoria 3800, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Monash Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Victoria 3800, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Victoria 3800, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
- EMBL-Australia and the ARC Centre of Excellence in Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Kilchert C, Kecman T, Priest E, Hester S, Aydin E, Kus K, Rossbach O, Castello A, Mohammed S, Vasiljeva L. System-wide analyses of the fission yeast poly(A) + RNA interactome reveal insights into organization and function of RNA-protein complexes. Genome Res 2020; 30:1012-1026. [PMID: 32554781 PMCID: PMC7397868 DOI: 10.1101/gr.257006.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
Large RNA-binding complexes play a central role in gene expression and orchestrate production, function, and turnover of mRNAs. The accuracy and dynamics of RNA–protein interactions within these molecular machines are essential for their function and are mediated by RNA-binding proteins (RBPs). Here, we show that fission yeast whole-cell poly(A)+ RNA–protein crosslinking data provide information on the organization of RNA–protein complexes. To evaluate the relative enrichment of cellular RBPs on poly(A)+ RNA, we combine poly(A)+ RNA interactome capture with a whole-cell extract normalization procedure. This approach yields estimates of in vivo RNA-binding activities that identify subunits within multiprotein complexes that directly contact RNA. As validation, we trace RNA interactions of different functional modules of the 3′ end processing machinery and reveal additional contacts. Extending our analysis to different mutants of the RNA exosome complex, we explore how substrate channeling through the complex is affected by mutation. Our data highlight the central role of the RNA helicase Mtl1 in regulation of the complex and provide insights into how different components contribute to engagement of the complex with substrate RNA. In addition, we characterize RNA-binding activities of novel RBPs that have been recurrently detected in the RNA interactomes of multiple species. We find that many of these, including cyclophilins and thioredoxins, are substoichiometric RNA interactors in vivo. Because RBPomes show very good overall agreement between species, we propose that the RNA-binding characteristics we observe in fission yeast are likely to apply to related proteins in higher eukaryotes as well.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Emily Priest
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Ebru Aydin
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Krzysztof Kus
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Oliver Rossbach
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom.,Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
14
|
Saha A, Duchambon P, Masson V, Loew D, Bombard S, Teulade-Fichou MP. Nucleolin Discriminates Drastically between Long-Loop and Short-Loop Quadruplexes. Biochemistry 2020; 59:1261-1272. [PMID: 32191439 DOI: 10.1021/acs.biochem.9b01094] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigate herein the interaction between nucleolin (NCL) and a set of G4 sequences derived from the CEB25 human minisatellite that adopt a parallel topology while differing in the length of the central loop (from nine nucleotides to one nucleotide). It is revealed that NCL strongly binds to long-loop (five to nine nucleotides) G4 while interacting weakly with the shorter variants (loop with fewer than three nucleotides). Photo-cross-linking experiments using 5-bromo-2'-deoxyuridine (BrU)-modified sequences further confirmed the loop-length dependency, thereby indicating that the WT-CEB25-L191 (nine-nucleotide loop) is the best G4 substrate. Quantitative proteomic analysis (LC-MS/MS) of the product(s) obtained by photo-cross-linking NCL to this sequence enabled the identification of one contact site corresponding to a 15-amino acid fragment located in helix α2 of RNA binding domain 2 (RBD2), which sheds light on the role of this structural element in G4-loop recognition. Then, the ability of a panel of benchmark G4 ligands to prevent the NCL-G4 interaction was explored. It was found that only the most potent ligand PhenDC3 can inhibit NCL binding, thereby suggesting that the terminal guanine quartet is also a strong determinant of G4 recognition, putatively through interaction with the RGG domain. This study describes the molecular mechanism by which NCL recognizes G4-containing long loops and leads to the proposal of a model implying a concerted action of RBD2 and RGG domains to achieve specific G4 recognition via a dual loop-quartet interaction.
Collapse
Affiliation(s)
- Abhijit Saha
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| | - Patricia Duchambon
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| | - Vanessa Masson
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, Paris 75248 Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, Paris 75248 Cedex 05, France
| | - Sophie Bombard
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, 91405 Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
15
|
Leitner A, Dorn G, Allain FHT. Combining Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy for Integrative Structural Biology of Protein-RNA Complexes. Cold Spring Harb Perspect Biol 2019; 11:a032359. [PMID: 31262947 PMCID: PMC6601463 DOI: 10.1101/cshperspect.a032359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deciphering complex RNA-protein interactions on a (near-)atomic level is a hurdle that hinders advancing our understanding of fundamental processes in RNA metabolism and RNA-based gene regulation. To overcome challenges associated with individual structure determination methods, structural information derived from complementary biophysical methods can be combined in integrative structural biology approaches. Here, we review recent advances in such hybrid structural approaches with a focus on combining mass spectrometric analysis of cross-linked protein-RNA complexes and nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Georg Dorn
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nat Commun 2019; 10:2682. [PMID: 31213602 PMCID: PMC6581911 DOI: 10.1038/s41467-019-10585-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
RNA-protein complexes play essential regulatory roles at nearly all levels of gene expression. Using in vivo crosslinking and RNA capture, we report a comprehensive RNA-protein interactome in a metazoan at four levels of resolution: single amino acids, domains, proteins and multisubunit complexes. We devise CAPRI, a method to map RNA-binding domains (RBDs) by simultaneous identification of RNA interacting crosslinked peptides and peptides adjacent to such crosslinked sites. CAPRI identifies more than 3000 RNA proximal peptides in Drosophila and human proteins with more than 45% of them forming new interaction interfaces. The comparison of orthologous proteins enables the identification of evolutionary conserved RBDs in globular domains and intrinsically disordered regions (IDRs). By comparing the sequences of IDRs through evolution, we classify them based on the type of motif, accumulation of tandem repeats, conservation of amino acid composition and high sequence divergence. Comprehensive characterisation of RNA-protein interactions requires different levels of resolution. Here, the authors present an integrated mass spectrometry-based approach that allows them to define the Drosophila RNA-protein interactome from the level of multisubunit complexes down to the RNA-binding amino acid.
Collapse
|
17
|
Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ 2018; 26:1346-1364. [PMID: 30341421 DOI: 10.1038/s41418-018-0220-6] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/15/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Argonaute 2 (AGO2), the core component of microRNA (miRNA)-induced silencing complex, plays a compelling role in tumorigenesis and aggressiveness. However, the mechanisms regulating the functions of AGO2 in cancer still remain elusive. Herein, we indentify one intronic circular RNA (circRNA) generated from AGO2 gene (circAGO2) as a novel regulator of AGO2-miRNA complexes and cancer progression. CircAGO2 is up-regulated in gastric cancer, colon cancer, prostate cancer, and neuroblastoma, and is associated with poor prognosis of patients. CircAGO2 promotes the growth, invasion, and metastasis of cancer cells in vitro and in vivo. Mechanistic studies reveal that circAGO2 physically interacts with human antigen R (HuR) protein to facilitate its activation and enrichment on the 3'-untranslated region of target genes, resulting in reduction of AGO2 binding and repression of AGO2/miRNA-mediated gene silencing associated with cancer progression. Pre-clinically, administration of lentivirus-mediated short hairpin RNA targeting circAGO2 inhibits the expression of downstream target genes, and suppresses the tumorigenesis and aggressiveness of xenografts in nude mice. In addition, blocking the interaction between circAGO2 and HuR by cell-penetrating inhibitory peptide represses the tumorigenesis and aggressiveness of cancer cells. Taken together, these results indicate that oncogenic circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes.
Collapse
|
18
|
Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods 2018; 144:64-78. [PMID: 29753003 DOI: 10.1016/j.ymeth.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
With the goal of expanding the very limited toolkit of cross-linking agents available for nucleic acids and their protein complexes, we evaluated the merits of a wide range of bifunctional agents that may be capable of reacting with the functional groups characteristic of these types of biopolymers. The survey specifically focused on the ability of test reagents to produce desirable inter-molecular conjugates, which could reveal the identity of interacting components and the position of mutual contacts, while also considering a series of practical criteria for their utilization as viable nucleic acid probes. The survey employed models consisting of DNA, RNA, and corresponding protein complexes to mimic as close as possible typical applications. Denaturing polyacrylamide gel electrophoresis (PAGE) and mass spectrometric (MS) analyses were implemented in concert to monitor the formation of the desired conjugates. In particular, the former was used as a rapid and inexpensive tool for the efficient evaluation of cross-linker activity under a broad range of experimental conditions. The latter was applied after preliminary rounds of reaction optimization to enable full-fledged product characterization and, more significantly, differentiation between mono-functional and intra- versus inter-molecular conjugates. This information provided the feedback necessary to further optimize reaction conditions and explain possible outcomes. Among the reagents tested in the study, platinum complexes and nitrogen mustards manifested the most favorable characteristics for practical cross-linking applications, whereas other compounds provided inferior yields, or produced rather unstable conjugates that did not survive the selected analytical conditions. The observed outcomes will help guide the selection of the most appropriate cross-linking reagent for a specific task, whereas the experimental conditions described here will provide an excellent starting point for approaching these types of applications. As a whole, the results of the survey clearly emphasize that finding a universal reagent, which may afford excellent performance with all types of nucleic acid substrates, will require extending the exploration beyond the traditional chemistries employed to modify the constitutive functional groups of these vital biopolymers.
Collapse
|
19
|
How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 2018; 144:3-13. [PMID: 29704661 DOI: 10.1016/j.ymeth.2018.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023] Open
Abstract
Native mass spectrometry (MS) is an emerging approach for characterizing biomacromolecular structure and interactions under physiologically relevant conditions. In native MS measurement, intact macromolecules or macromolecular complexes are directly ionized from a non-denaturing solvent, and key noncovalent interactions that hold the complexes together can be preserved for MS analysis in the gas phase. This technique provides unique multi-level structural information such as conformational changes, stoichiometry, topology and dynamics, complementing conventional biophysical techniques. Despite the maturation of native MS and greatly expanded range of applications in recent decades, further dissemination is needed to make the community aware of such a technique. In this review, we attempt to provide an overview of the current body of knowledge regarding major aspects of native MS and explain how such technique contributes to the characterization of biomacromolecular higher-order structure and interactions.
Collapse
|
20
|
Politis A, Schmidt C. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. J Proteomics 2018; 175:34-41. [DOI: 10.1016/j.jprot.2017.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/14/2023]
|
21
|
Abstract
RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.
Collapse
|
22
|
Flett FJ, Ruksenaite E, Armstrong LA, Bharati S, Carloni R, Morris ER, Mackay CL, Interthal H, Richardson JM. Structural basis for DNA 3'-end processing by human tyrosyl-DNA phosphodiesterase 1. Nat Commun 2018; 9:24. [PMID: 29295983 PMCID: PMC5750209 DOI: 10.1038/s41467-017-02530-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/06/2017] [Indexed: 11/15/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA 3'-end processing enzyme that repairs topoisomerase 1B-induced DNA damage. We use a new tool combining site-specific DNA-protein cross-linking with mass spectrometry to identify Tdp1 interactions with DNA. A conserved phenylalanine (F259) of Tdp1, required for efficient DNA processing in biochemical assays, cross-links to defined positions in DNA substrates. Crystal structures of Tdp1-DNA complexes capture the DNA repair machinery after 3'-end cleavage; these reveal how Tdp1 coordinates the 3'-phosphorylated product of nucleosidase activity and accommodates duplex DNA. A hydrophobic wedge splits the DNA ends, directing the scissile strand through a channel towards the active site. The F259 side-chain stacks against the -3 base pair, delimiting the junction of duplexed and melted DNA, and fixes the scissile strand in the channel. Our results explain why Tdp1 cleavage is non-processive and provide a molecular basis for DNA 3'-end processing by Tdp1.
Collapse
Affiliation(s)
- Fiona J Flett
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Emilija Ruksenaite
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Lee A Armstrong
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Shipra Bharati
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Roberta Carloni
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Elizabeth R Morris
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Heidrun Interthal
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
23
|
Flett FJ, Sachsenberg T, Kohlbacher O, Mackay CL, Interthal H. Differential Enzymatic 16O/ 18O Labeling for the Detection of Cross-Linked Nucleic Acid-Protein Heteroconjugates. Anal Chem 2017; 89:11208-11213. [PMID: 28885003 DOI: 10.1021/acs.analchem.7b01625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cross-linking of nucleic acids to proteins in combination with mass spectrometry permits the precise identification of interacting residues between nucleic acid-protein complexes. However, the mass spectrometric identification and characterization of cross-linked nucleic acid-protein heteroconjugates within a complex sample is challenging. Here we establish a novel enzymatic differential 16O/18O-labeling approach, which uniquely labels heteroconjugates. We have developed an automated data analysis workflow based on OpenMS for the identification of differentially isotopically labeled heteroconjugates against a complex background. We validated our method using synthetic model DNA oligonucleotide-peptide heteroconjugates, which were subjected to the labeling reaction and analyzed by high-resolution FTICR mass spectrometry.
Collapse
Affiliation(s)
- Fiona J Flett
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3FF, Scotland, U.K
| | - Timo Sachsenberg
- Center for Bioinformatics, Quantitative Biology Center and Department of Computer Science, University of Tübingen , Sand 14, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Center for Bioinformatics, Quantitative Biology Center and Department of Computer Science, University of Tübingen , Sand 14, 72076 Tübingen, Germany.,Max Planck Institute for Developmental Biology , Spemannstr. 35, 72076 Tübingen, Germany
| | - C Logan Mackay
- School of Chemistry, University of Edinburgh , Edinburgh EH9 3FJ, Scotland, U.K
| | - Heidrun Interthal
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3FF, Scotland, U.K
| |
Collapse
|
24
|
Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap. Nat Protoc 2017; 12:2447-2464. [PMID: 29095441 DOI: 10.1038/nprot.2017.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This protocol is an extension to: Nat. Protoc. 8, 491-500 (2013); doi:10.1038/nprot.2013.020; published online 14 February 2013RBDmap is a method for identifying, in a proteome-wide manner, the regions of RNA-binding proteins (RBPs) engaged in native interactions with RNA. In brief, cells are irradiated with UV light to induce protein-RNA cross-links. Following stringent denaturing washes, the resulting covalently linked protein-RNA complexes are purified with oligo(dT) magnetic beads. After elution, RBPs are subjected to partial proteolysis, in which the protein regions still bound to the RNA and those released to the supernatant are separated by a second oligo(dT) selection. After sample preparation and mass-spectrometric analysis, peptide intensity ratios between the RNA-bound and released fractions are used to determine the RNA-binding regions. As a Protocol Extension, this article describes an adaptation of an existing Protocol and offers additional applications. The earlier protocol (for the RNA interactome capture method) describes how to identify the active RBPs in cultured cells, whereas this Protocol Extension also enables the identification of the RNA-binding domains of RBPs. The experimental workflow takes 1 week plus 2 additional weeks for proteomics and data analysis. Notably, RBDmap presents numerous advantages over classic methods for determining RNA-binding domains: it produces proteome-wide, high-resolution maps of the protein regions contacting the RNA in a physiological context and can be adapted to different biological systems and conditions. Because RBDmap relies on the isolation of polyadenylated RNA via oligo(dT), it will not provide RNA-binding information on proteins interacting exclusively with nonpolyadenylated transcripts. Applied to HeLa cells, RBDmap uncovered 1,174 RNA-binding sites in 529 proteins, many of which were previously unknown.
Collapse
|
25
|
Ciesiolka A, Jazurek M, Drazkowska K, Krzyzosiak WJ. Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions. Front Cell Neurosci 2017; 11:97. [PMID: 28442996 PMCID: PMC5387085 DOI: 10.3389/fncel.2017.00097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Short Tandem Repeats (STRs) are frequent entities in many transcripts, however, in some cases, pathological events occur when a critical repeat length is reached. This phenomenon is observed in various neurological disorders, such as myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome, C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), and polyglutamine diseases, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA). The pathological effects of these repeats are triggered by mutant RNA transcripts and/or encoded mutant proteins, which depend on the localization of the expanded repeats in non-coding or coding regions. A growing body of recent evidence revealed that the RNA structures formed by these mutant RNA repeat tracts exhibit toxic effects on cells. Therefore, in this review article, we present existing knowledge on the structural aspects of different RNA repeat tracts as revealed mainly using well-established biochemical and biophysical methods. Furthermore, in several cases, it was shown that these expanded RNA structures are potent traps for a variety of RNA-binding proteins and that the sequestration of these proteins from their normal intracellular environment causes alternative splicing aberration, inhibition of nuclear transport and export, or alteration of a microRNA biogenesis pathway. Therefore, in this review article, we also present the most studied examples of abnormal interactions that occur between mutant RNAs and their associated proteins.
Collapse
Affiliation(s)
- Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Karolina Drazkowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
26
|
Leney AC, Heck AJR. Native Mass Spectrometry: What is in the Name? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:5-13. [PMID: 27909974 PMCID: PMC5174146 DOI: 10.1007/s13361-016-1545-3] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 05/11/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Aneika C Leney
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 2016; 35:2634-2657. [PMID: 27797822 PMCID: PMC5167345 DOI: 10.15252/embj.201694818] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
28
|
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res 2016; 44:9050-9070. [PMID: 27625393 PMCID: PMC5100574 DOI: 10.1093/nar/gkw803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases.
Collapse
Affiliation(s)
- Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julia Starega-Roslan
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Bilinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
29
|
Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsveld J, Hentze MW. Comprehensive Identification of RNA-Binding Domains in Human Cells. Mol Cell 2016; 63:696-710. [PMID: 27453046 PMCID: PMC5003815 DOI: 10.1016/j.molcel.2016.06.029] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Mammalian cells harbor more than a thousand RNA-binding proteins (RBPs), with half of these employing unknown modes of RNA binding. We developed RBDmap to determine the RNA-binding sites of native RBPs on a proteome-wide scale. We identified 1,174 binding sites within 529 HeLa cell RBPs, discovering numerous RNA-binding domains (RBDs). Catalytic centers or protein-protein interaction domains are in close relationship with RNA-binding sites, invoking possible effector roles of RNA in the control of protein function. Nearly half of the RNA-binding sites map to intrinsically disordered regions, uncovering unstructured domains as prevalent partners in protein-RNA interactions. RNA-binding sites represent hot spots for defined posttranslational modifications such as lysine acetylation and tyrosine phosphorylation, suggesting metabolic and signal-dependent regulation of RBP function. RBDs display a high degree of evolutionary conservation and incidence of Mendelian mutations, suggestive of important functional roles. RBDmap thus yields profound insights into native protein-RNA interactions in living cells.
Collapse
Affiliation(s)
- Alfredo Castello
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Bernd Fischer
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christian K Frese
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rastislav Horos
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anne-Marie Alleaume
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sophia Foehr
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tomaz Curk
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Faculty of Computer and Information Science, University of Ljubljana, 1001 Ljubljana, Slovenia
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
30
|
Flett FJ, Walton JGA, Mackay CL, Interthal H. Click chemistry generated model DNA-peptide heteroconjugates as tools for mass spectrometry. Anal Chem 2016; 87:9595-9. [PMID: 26335278 DOI: 10.1021/acs.analchem.5b02047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UV cross-linking of nucleic acids to proteins in combination with mass spectrometry is a powerful technique to identify proteins, peptides, and the amino acids involved in intermolecular interactions within nucleic acid-protein complexes. However, the mass spectrometric identification of cross-linked nucleic acid-protein heteroconjugates in complex mixtures and MS/MS characterization of the specific sites of cross-linking is extremely challenging. As a tool for the optimization of sample preparation, ionization, fragmentation, and detection by mass spectrometry, novel synthetic DNA-peptide heteroconjugates were generated to act as mimics of UV cross-linked heteroconjugates. Click chemistry was employed to cross-link peptides to DNA oligonucleotides. These heteroconjugates were fully characterized by high resolution FTICR mass spectrometry and by collision-induced dissociation (CID) following nuclease P1 digestion of the DNA moiety to a single nucleotide monophosphate. This allowed the exact site of the cross-linking within the peptide to be unambiguously assigned. These synthetic DNA-peptide heteroconjugates have the potential to be of use for a variety of applications that involve DNA-peptide heteroconjugates.
Collapse
Affiliation(s)
- Fiona J Flett
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3FF, Scotland, United Kingdom
| | - Jeffrey G A Walton
- School of Chemistry, University of Edinburgh , Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - C Logan Mackay
- School of Chemistry, University of Edinburgh , Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Heidrun Interthal
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3FF, Scotland, United Kingdom
| |
Collapse
|
31
|
Schmidt C, Beilsten-Edmands V, Robinson CV. Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies. J Mol Biol 2015; 428:344-356. [PMID: 26497764 DOI: 10.1016/j.jmb.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023]
Abstract
Translation initiation in eukaryotes requires the interplay of at least 10 initiation factors that interact at the different steps of this phase of gene expression. The interactions of initiation factors and related proteins are in general controlled by phosphorylation, which serves as a regulatory switch to turn protein translation on or off. The structures of initiation factors and a complete description of their post-translational modification (PTM) status are therefore required in order to fully understand these processes. In recent years, mass spectrometry has contributed considerably to provide this information and nowadays is proving to be indispensable when studying dynamic heterogeneous protein complexes such as the eukaryotic initiation factors. Herein, we highlight mass spectrometric approaches commonly applied to identify interacting subunits and their PTMs and the structural techniques that allow the architecture of protein complexes to be assessed. We present recent structural investigations of initiation factors and their interactions with other factors and with ribosomes and we assess the models generated. These models allow us to locate PTMs within initiation factor complexes and to highlight possible roles for phosphorylation sites in regulating interaction interfaces.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Victoria Beilsten-Edmands
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| |
Collapse
|
32
|
Hrle A, Maier LK, Sharma K, Ebert J, Basquin C, Urlaub H, Marchfelder A, Conti E. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family. RNA Biol 2015; 11:1072-82. [PMID: 25483036 PMCID: PMC4615900 DOI: 10.4161/rna.29893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.
Collapse
Key Words
- CRISPR
- CRISPR, Clustered regulatory short interspaced palindromic repeats
- Cas, CRISPR-associated
- Cas7
- H1 and H2 and H1-2, β-hairpins of insertion domain 1 (or lid domain)
- Mk, Methanopyrus kandleri
- RAMP, Repeat associated mysterious protein
- RNA binding
- RNAi, RNA interference
- RRM domain
- RRM, RNA recognition motif
- Rmsd, Root mean square deviation
- SAD, Single-wavelength anomalous dispersion
- Ss, Sulfolobus solfataricus
- Tp, Thermofilum pendens
- crRNA, CRISPR RNA
- dCASCADE, interference complex subtype I-D
- eCASCADE, interference complex subtype I-E
- prokaryotic immune system
Collapse
Affiliation(s)
- Ajla Hrle
- a Structural Cell Biology Department; Max Planck Institute of Biochemistry ; Martinsried , Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Li M, He X, Liu H, Fu Z, He X, Lu X. Proteomic analysis of silkworm midgut cellular proteins interacting with the 5' end of infectious flacherie virus genomic RNA. Acta Biochim Biophys Sin (Shanghai) 2015; 47:80-90. [PMID: 25534780 DOI: 10.1093/abbs/gmu119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The flacherie disease in the silkworm is caused by the infectious flacherie virus (IFV). IFV relies on its 5' region of genomic RNA to recruit host-related factors to implement viral translation and replication. To identify host proteins bound to the 5'-region of IFV RNA and identify proteins important for its function, mass spectrometry was used to identify proteins from silkworm midgut extracts that were obtained using RNA aptamer-labeled 5' region of IFV RNA. We found 325 protein groups (unique peptide≥2) bound to the 5' region of IFV RNA including translation-related factors (16 ribosomal subunits, 3 eukaryotic initiation factor subunits, 1 elongation factor subunit and 6 potential internal ribosome entry site trans-acting factors), cytoskeleton-related proteins, membrane-related proteins, metabolism enzymes, and other proteins. These results can be used to study the translation and replication related factors of IFV interacting with host silkworm and to control flacherie disease in silkworm.
Collapse
Affiliation(s)
- Mingqian Li
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi He
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Liu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhangwuke Fu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangkang He
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Silkworm Pathology and Disease Control Laboratory, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Staals RHJ, Zhu Y, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, Sakamoto K, Suzuki T, Dohmae N, Yokoyama S, Schaap PJ, Urlaub H, Heck AJR, Nogales E, Doudna JA, Shinkai A, van der Oost J. RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell 2014; 56:518-30. [PMID: 25457165 PMCID: PMC4342149 DOI: 10.1016/j.molcel.2014.10.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/27/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1-Csm5) with an uneven stoichiometry and a single crRNA of variable size (35-53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence.
Collapse
Affiliation(s)
- Raymond H J Staals
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands.
| | - Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - David W Taylor
- Howard Hughes Medical Institute and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Jack E Kornfeld
- Howard Hughes Medical Institute and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Marnix Vlot
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Nirajan Neupane
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Koen Varossieau
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands
| | | | | | - Naoshi Dohmae
- Global Research Cluster, RIKEN, Saitama 351-0198, Japan
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, 6703 HB Wageningen, the Netherlands
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Center, 37075 Göttingen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands
| | - Eva Nogales
- Howard Hughes Medical Institute and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Department of Molecular and Cell Biology, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720-3200, USA
| | - Jennifer A Doudna
- Howard Hughes Medical Institute and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Department of Molecular and Cell Biology, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720-3200, USA
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan; Structural Biology Laboratory, RIKEN, Kanagawa 230-0045, Japan
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, the Netherlands.
| |
Collapse
|
35
|
Kramer K, Sachsenberg T, Beckmann BM, Qamar S, Boon KL, Hentze MW, Kohlbacher O, Urlaub H. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat Methods 2014; 11:1064-70. [PMID: 25173706 PMCID: PMC6485471 DOI: 10.1038/nmeth.3092] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
Abstract
RNA–protein complexes play pivotal roles in many central biological processes. While methods based on next-generation sequencing have profoundly advanced our ability to identify the specific RNAs bound by a particular protein, there is a dire need for precise and systematic ways to identify RNA interaction sites on proteins. We have developed an integrated experimental and computational workflow combining photo-induced cross-linking, high-resolution mass spectrometry, and automated analysis of the resulting mass spectra for the identification of cross-linked peptides and exact amino acids with their cross-linked RNA oligonucleotide moiety of such RNA-binding proteins. The generic workflow can be applied to any RNA–protein complex of interest. Application to human and yeast mRNA–protein complexes in vitro and in vivo demonstrates the powerful utility of the approach by identification of 257 cross-linking sites on 124 distinct RNA-binding proteins. The software pipeline developed for this purpose is available as open-source software as part of the OpenMS project.
Collapse
Affiliation(s)
- Katharina Kramer
- 1] Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2]
| | - Timo Sachsenberg
- 1] Center for Bioinformatics, University of Tübingen, Tübingen, Germany. [2] Department of Computer Science, University of Tübingen, Tübingen, Germany. [3]
| | | | - Saadia Qamar
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kum-Loong Boon
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Oliver Kohlbacher
- 1] Center for Bioinformatics, University of Tübingen, Tübingen, Germany. [2] Department of Computer Science, University of Tübingen, Tübingen, Germany. [3] Quantitative Biology Center, University of Tübingen, Tübingen, Germany. [4] Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Henning Urlaub
- 1] Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2] Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| |
Collapse
|
36
|
Plagens A, Tripp V, Daume M, Sharma K, Klingl A, Hrle A, Conti E, Urlaub H, Randau L. In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex. Nucleic Acids Res 2014; 42:5125-38. [PMID: 24500198 PMCID: PMC4005679 DOI: 10.1093/nar/gku120] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) systems of type I use a Cas ribonucleoprotein complex for antiviral defense (Cascade) to mediate the targeting and degradation of foreign DNA. To address molecular features of the archaeal type I-A Cascade interference mechanism, we established the in vitro assembly of the Thermoproteus tenax Cascade from six recombinant Cas proteins, synthetic CRISPR RNAs (crRNAs) and target DNA fragments. RNA-Seq analyses revealed the processing pattern of crRNAs from seven T. tenax CRISPR arrays. Synthetic crRNA transcripts were matured by hammerhead ribozyme cleavage. The assembly of type I-A Cascade indicates that Cas3′ and Cas3′′ are an integral part of the complex, and the interference activity was shown to be dependent on the crRNA and the matching target DNA. The reconstituted Cascade was used to identify sequence motifs that are required for efficient DNA degradation and to investigate the role of the subunits Cas7 and Cas3′′ in the interplay with other Cascade subunits.
Collapse
Affiliation(s)
- André Plagens
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany, Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany, Cell Biology and LOEWE Research Centre for Synthetic Microbiology, Philipps-Universität Marburg, D-35043 Marburg, Germany and Department of Structural Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schmidt C, Robinson CV. Dynamic protein ligand interactions--insights from MS. FEBS J 2014; 281:1950-64. [PMID: 24393119 PMCID: PMC4154455 DOI: 10.1111/febs.12707] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Proteins undergo dynamic interactions with carbohydrates, lipids and nucleotides to form catalytic cores, fine‐tuned for different cellular actions. The study of dynamic interactions between proteins and their cognate ligands is therefore fundamental to the understanding of biological systems. During the last two decades MS, and its associated techniques, has become accepted as a method for the study of protein–ligand interactions, not only for covalent complexes, where the use of MS is well established, but also, and significantly for protein–ligand interactions, for noncovalent assemblies. In this review, we employ a broad definition of a ligand to encompass protein subunits, drug molecules, oligonucleotides, carbohydrates, and lipids. Under the appropriate conditions, MS can reveal the composition, heterogeneity and dynamics of these protein–ligand interactions, and in some cases their structural arrangements and binding affinities. Herein, we highlight MS approaches for studying protein–ligand complexes, including those containing integral membrane subunits, and showcase examples from recent literature. Specifically, we tabulate the myriad of methodologies, including hydrogen exchange, proteomics, hydroxyl radical footprinting, intact complexes, and crosslinking, which, when combined with MS, provide insights into conformational changes and subtle modifications in response to ligand‐binding interactions.
Collapse
|
38
|
Tinnefeld V, Sickmann A, Ahrends R. Catch me if you can: challenges and applications of cross-linking approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:99-116. [PMID: 24881459 DOI: 10.1255/ejms.1259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomolecular complexes are the groundwork of life and the basis for cell signaling, energy transfer, motion, stability and cellular metabolism. Understanding the underlying complex interactions on the molecular level is an essential step to obtain a comprehensive insight into cellular and systems biology. For the investigation of molecular interactions, various methods, including Förster resonance energy transfer, nuclear magnetic resonance spectroscopy, X-ray crystallography and yeast two-hybrid screening, can be utilized. Nevertheless, the most reliable approach for structural proteomics and the identification of novel protein-binding partners is chemical cross-linking. The rationale is that upon forming a covalent bond between a protein and its interaction partner (protein, lipid, RNA/DNA, carbohydrate) the native complex state is "frozen" and accessible for detailed mass spectrometric analysis. In this review we provide a synopsis on crosslinker design, chemistry, pitfalls, limitations and novel applications in the field, and feature an overview of current software applications.
Collapse
|
39
|
Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex. Nat Struct Mol Biol 2013; 20:1281-8. [PMID: 24121231 DOI: 10.1038/nsmb.2686] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/05/2013] [Indexed: 02/01/2023]
Abstract
The Ccr4-Not complex is involved in several aspects of gene expression, including mRNA decay, translational repression and transcription. We determined the 2.8-Å-resolution crystal structure of a 120-kDa core complex of the Saccharomyces cerevisiae Not module comprising the C-terminal arm of Not1, Not2 and Not5. Not1 is a HEAT-repeat scaffold. Not2 and Not5 have extended regions that wrap around Not1 and around their globular domains, the Not boxes. The Not boxes resemble Sm folds and interact with each other with a noncanonical dimerization surface. Disruption of the interactions within the ternary complex has severe effects on growth in vivo. The ternary complex forms a composite surface that binds poly(U) RNA in vitro, with a site at the Not5 Not box. The results suggest that the Not module forms a versatile platform for macromolecular interactions.
Collapse
|
40
|
Production of pure and functional RNA for in vitro reconstitution experiments. Methods 2013; 65:333-41. [PMID: 24021718 DOI: 10.1016/j.ymeth.2013.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022] Open
Abstract
Reconstitution of protein complexes has been a valuable tool to test molecular functions and to interpret in vivo observations. In recent years, a large number of RNA-protein complexes has been identified to regulate gene expression and to be important for a range of cellular functions. In contrast to protein complexes, in vitro analyses of RNA-protein complexes are hampered by the fact that recombinant expression and purification of RNA molecules is more difficult and less well established than for proteins. Here we review the current state of technology available for in vitro experiments with RNAs. We outline the possibilities to produce and purify large amounts of homogenous RNA and to perform the required quality controls. RNA-specific problems such as degradation, 5' and 3' end heterogeneity, co-existence of different folding states, and prerequisites for reconstituting RNAs with recombinantly expressed proteins are discussed. Additionally a number of techniques for the characterization of direct and indirect RNA-protein interactions are explained.
Collapse
|
41
|
Sharif H, Ozgur S, Sharma K, Basquin C, Urlaub H, Conti E. Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions. Nucleic Acids Res 2013; 41:8377-90. [PMID: 23851565 PMCID: PMC3783180 DOI: 10.1093/nar/gkt600] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Translational repression and deadenylation of eukaryotic mRNAs result either in the sequestration of the transcripts in a nontranslatable pool or in their degradation. Removal of the 5′ cap structure is a crucial step that commits deadenylated mRNAs to 5′-to-3′ degradation. Pat1, Edc3 and the DEAD-box protein Dhh1 are evolutionary conserved factors known to participate in both translational repression and decapping, but their interplay is currently unclear. We report the 2.8 Å resolution structure of yeast Dhh1 bound to the N-terminal domain of Pat1. The structure shows how Pat1 wraps around the C-terminal RecA domain of Dhh1, docking onto the Phe-Asp-Phe (FDF) binding site. The FDF-binding site of Dhh1 also recognizes Edc3, revealing why the binding of Pat1 and Edc3 on Dhh1 are mutually exclusive events. Using co-immunoprecipitation assays and structure-based mutants, we demonstrate that the mode of Dhh1-Pat1 recognition is conserved in humans. Pat1 and Edc3 also interfere and compete with the RNA-binding properties of Dhh1. Mapping the RNA-binding sites on Dhh1 with a crosslinking–mass spectrometry approach shows a large RNA-binding surface around the C-terminal RecA domain, including the FDF-binding pocket. The results suggest a model for how Dhh1-containing messenger ribonucleoprotein particles might be remodeled upon Pat1 and Edc3 binding.
Collapse
Affiliation(s)
- Humayun Sharif
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried/Munich, D-82152 Germany and Cellular Biochemistry Department, Max Planck Institute of Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
42
|
York A, Fodor E. Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell. RNA Biol 2013; 10:1274-82. [PMID: 23807439 PMCID: PMC3817148 DOI: 10.4161/rna.25356] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The flow of genetic information from sites of transcription within the nucleus to the cytoplasmic translational machinery of eukaryotic cells is obstructed by a physical blockade, the nuclear double membrane, which must be overcome in order to adhere to the central dogma of molecular biology, DNA makes RNA makes protein. Advancement in the field of cellular and molecular biology has painted a detailed picture of the molecular mechanisms from transcription of genes to mRNAs and their processing that is closely coupled to export from the nucleus. The rules that govern delivering messenger transcripts from the nucleus must be obeyed by influenza A virus, a member of the Orthomyxoviridae that has adopted a nuclear replication cycle. The negative-sense genome of influenza A virus is segmented into eight individual viral ribonucleoprotein (vRNP) complexes containing the viral RNA-dependent RNA polymerase and single-stranded RNA encapsidated in viral nucleoprotein. Influenza A virus mRNAs fall into three major categories, intronless, intron-containing unspliced and spliced. During evolutionary history, influenza A virus has conceived a way of negotiating the passage of viral transcripts from the nucleus to cytoplasmic sites of protein synthesis. The major mRNA nuclear export NXF1 pathway is increasingly implicated in viral mRNA export and this review considers and discusses the current understanding of how influenza A virus exploits the host mRNA export pathway for replication.
Collapse
Affiliation(s)
- Ashley York
- Sir William Dunn School of Pathology; University of Oxford; Oxford, United Kingdom
| | | |
Collapse
|
43
|
Konijnenberg A, Butterer A, Sobott F. Native ion mobility-mass spectrometry and related methods in structural biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1239-56. [PMID: 23246828 DOI: 10.1016/j.bbapap.2012.11.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
Mass spectrometry-based methods have become increasingly important in structural biology - in particular for large and dynamic, even heterogeneous assemblies of biomolecules. Native electrospray ionization coupled to ion mobility-mass spectrometry provides access to stoichiometry, size and architecture of noncovalent assemblies; while non-native approaches such as covalent labeling and H/D exchange can highlight dynamic details of protein structures and capture intermediate states. In this overview article we will describe these methods and highlight some recent applications for proteins and protein complexes, with particular emphasis on native MS analysis. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
|