1
|
Dong M, Bian Y, Wang Y, Dong J, Yao Y, Deng Z, Qin H, Zou H, Ye M. Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis. Anal Chem 2017; 89:9307-9314. [DOI: 10.1021/acs.analchem.7b02078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mingming Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- Medical Research Center, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhen Deng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Hanfa Zou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
2
|
Identification of Glioblastoma Phosphotyrosine-Containing Proteins with Two-Dimensional Western Blotting and Tandem Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134050. [PMID: 26090378 PMCID: PMC4450212 DOI: 10.1155/2015/134050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/24/2022]
Abstract
To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma.
Collapse
|
3
|
Parallel Evolution of the Glycogen Synthase 1 (Muscle) Gene Gys1 Between Old World and New World Fruit Bats (Order: Chiroptera). Biochem Genet 2014; 52:443-58. [DOI: 10.1007/s10528-014-9659-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/06/2014] [Indexed: 01/09/2023]
|
4
|
The advantages of microflow LC–MS/MS compared with conventional HPLC–MS/MS for the analysis of methotrexate from human plasma. Bioanalysis 2013; 5:1387-96. [DOI: 10.4155/bio.13.73] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: In support of bioanalysis, there has always been a desire to improve detection limits and reduce scale. Microflow LC (MFLC) coupled with MS accomplishes both of these goals. Results: As such, MFLC coupled with an MS system was used to generate bioanalytical validation data that met US FDA criteria. The MFLC–MS/MS data was compared with the same method with the use of conventional HPLC–MS/MS and a more than 14× S/N improvement was found with the MFLC–MS/MS method. Methotrexate was used as a model molecule to demonstrate the validation of the method from human plasma. The MFLC–MS/MS method was demonstrated to be accurate (±7%) and precise (12.9% at the LLOQ and a maximum of 11.6% at all other concentrations) across the dynamic range of the assay (1–1000 ng/ml) and compared well with the HPLC–MS/MS method. The MFLC bioanalytical validation was performed at a flow rate of 35 µl/min on a 0.5-mm inner diameter (I.D.) column, whereas, for the same linear velocities on the 2.0-mm I.D. column, the conventional HPLC bioanalytical validation was performed at 700 µl/min. Since the flow rate of the MFLC system is 20-times less than the HPLC system, the consumable solvent and disposal cost to perform the MFLC validation was significantly less. Conclusion: MFLC–MS/MS can be used to perform bioanalytical method validations with increased MS signal, reduced source contamination and reduced solvent consumption.
Collapse
|
5
|
Dong YM, Chien KY, Chen JT, Lin SJ, Wang TCV, Yu JS. Site-specific separation and detection of phosphopeptide isomers with pH-mediated stacking capillary electrophoresis-electrospray ionization-tandem mass spectrometry. J Sep Sci 2013; 36:1582-9. [PMID: 23494885 DOI: 10.1002/jssc.201300054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 01/30/2023]
Abstract
This study reported a pH-mediated stacking CE coupled with ESI MS/MS method to determine the phosphorylation sites of three synthetic phosphopeptides containing structural isomers. These phosphopeptides mimic the phosphopeptides (amino acid residues 12-25) derived from the trypsin-digested products of human lamin A/C protein. The LODs were determined to be 118, 132 and 1240 fmol for SGAQASS(19)TpPL(22)SPTR, SGAQASS(19)TPL(22)SpPTR, and SGAQASS(19)TpPL(22)SpPTR, respectively. The established method was employed to analyze the phosphorylation sites of the trypsin-digested products of glutathione S-transferase-lamin A/C (1-57) fusion protein that had been phosphorylated in vitro by cyclin-dependent kinase 1. The results indicated that this method is feasible to specifically determine the phosphorylation site from phosphopeptide isomers in the trypsin-digested products of a kinase-catalyzed phosphoprotein, which should benefit the investigation of protein kinase-mediated cellular signal transduction.
Collapse
Affiliation(s)
- Yu-Ming Dong
- School of Pharmacy, Lanzhou University, PR China
| | | | | | | | | | | |
Collapse
|