1
|
González-Moro I, Rojas-Márquez H, Sebastian-delaCruz M, Mentxaka-Salgado J, Olazagoitia-Garmendia A, Mendoza LM, Lluch A, Fantuzzi F, Lambert C, Ares Blanco J, Marselli L, Marchetti P, Cnop M, Delgado E, Fernández-Real JM, Ortega FJ, Castellanos-Rubio A, Santin I. A long non-coding RNA that harbors a SNP associated with type 2 diabetes regulates the expression of TGM2 gene in pancreatic beta cells. Front Endocrinol (Lausanne) 2023; 14:1101934. [PMID: 36824360 PMCID: PMC9941620 DOI: 10.3389/fendo.2023.1101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION Most of the disease-associated single nucleotide polymorphisms (SNPs) lie in non- coding regions of the human genome. Many of these variants have been predicted to impact the expression and function of long non-coding RNAs (lncRNA), but the contribution of these molecules to the development of complex diseases remains to be clarified. METHODS Here, we performed a genetic association study between a SNP located in a lncRNA known as LncTGM2 and the risk of developing type 2 diabetes (T2D), and analyzed its implication in disease pathogenesis at pancreatic beta cell level. Genetic association study was performed on human samples linking the rs2076380 polymorphism with T2D and glycemic traits. The pancreatic beta cell line EndoC-bH1 was employed for functional studies based on LncTGM2 silencing and overexpression experiments. Human pancreatic islets were used for eQTL analysis. RESULTS We have identified a genetic association between LncTGM2 and T2D risk. Functional characterization of the LncTGM2 revealed its implication in the transcriptional regulation of TGM2, coding for a transglutaminase. The T2Dassociated risk allele in LncTGM2 disrupts the secondary structure of this lncRNA, affecting its stability and the expression of TGM2 in pancreatic beta cells. Diminished LncTGM2 in human beta cells impairs glucose-stimulated insulin release. CONCLUSIONS These findings provide novel information on the molecular mechanisms by which T2D-associated SNPs in lncRNAs may contribute to disease, paving the way for the development of new therapies based on the modulation of lncRNAs.
Collapse
Affiliation(s)
- Itziar González-Moro
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Henar Rojas-Márquez
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Maialen Sebastian-delaCruz
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Jon Mentxaka-Salgado
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Olazagoitia-Garmendia
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Luis Manuel Mendoza
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Aina Lluch
- Institut d’Investigació Biomèdica de Girona, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmen Lambert
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- University of Barcelona, Barcelona, Spain
| | - Jessica Ares Blanco
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Endocrinology and Nutrition Department, Central University Hospital of Asturias (HUCA), Oviedo, Spain
- Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, Pisa, Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Elías Delgado
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Endocrinology and Nutrition Department, Central University Hospital of Asturias (HUCA), Oviedo, Spain
- Department of Medicine, University of Oviedo, Oviedo, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
| | - José Manuel Fernández-Real
- Institut d’Investigació Biomèdica de Girona, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Oviedo, Spain
| | - Francisco José Ortega
- Institut d’Investigació Biomèdica de Girona, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ainara Castellanos-Rubio
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre, Madrid, Spain
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Izortze Santin, ; Ainara Castellanos-Rubio,
| | - Izortze Santin
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre, Madrid, Spain
- *Correspondence: Izortze Santin, ; Ainara Castellanos-Rubio,
| |
Collapse
|
2
|
Occhigrossi L, D’Eletto M, Barlev N, Rossin F. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2. Int J Mol Sci 2021; 22:ijms22126366. [PMID: 34198675 PMCID: PMC8232231 DOI: 10.3390/ijms22126366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions.
Collapse
Affiliation(s)
- Luca Occhigrossi
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Manuela D’Eletto
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Nickolai Barlev
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Moscow Institute of Physics and Technology (MIPT), 141701 Dolgoprudny, Russia
| | - Federica Rossin
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Correspondence:
| |
Collapse
|
3
|
Wang D, Tabti R, Elderwish S, Abou-Hamdan H, Djehal A, Yu P, Yurugi H, Rajalingam K, Nebigil CG, Désaubry L. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell Mol Life Sci 2020; 77:3525-3546. [PMID: 32062751 PMCID: PMC11104971 DOI: 10.1007/s00018-020-03475-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.
Collapse
Affiliation(s)
- Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Redouane Tabti
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Sabria Elderwish
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Hussein Abou-Hamdan
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Amel Djehal
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
- Superior National School Biotechnology Taoufik Khaznadar, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Peng Yu
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Canan G Nebigil
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France.
| |
Collapse
|
4
|
D'Eletto M, Rossin F, Fedorova O, Farrace MG, Piacentini M. Transglutaminase type 2 in the regulation of proteostasis. Biol Chem 2019; 400:125-140. [PMID: 29908126 DOI: 10.1515/hsz-2018-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
The maintenance of protein homeostasis (proteostasis) is a fundamental aspect of cell physiology that is essential for the survival of organisms under a variety of environmental and/or intracellular stress conditions. Acute and/or persistent stress exceeding the capacity of the intracellular homeostatic systems results in protein aggregation and/or damaged organelles that leads to pathological cellular states often resulting in cell death. These events are continuously suppressed by a complex macromolecular machinery that uses different intracellular pathways to maintain the proteome integrity in the various subcellular compartments ensuring a healthy cellular life span. Recent findings have highlighted the role of the multifunctional enzyme type 2 transglutaminase (TG2) as a key player in the regulation of intracellular pathways, such as autophagy/mitophagy, exosomes formation and chaperones function, which form the basis of proteostasis regulation under conditions of cellular stress. Here, we review the role of TG2 in these stress response pathways and how its various enzymatic activities might contributes to the proteostasis control.
Collapse
Affiliation(s)
- Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Olga Fedorova
- Institute of Cytology, 194064 Saint-Petersburg, Russia
| | - Maria Grazia Farrace
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, I-00133 Rome, Italy.,National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', I-00149 Rome, Italy
| |
Collapse
|
5
|
Cervantes M, Sassone-Corsi P. Modification of histone proteins by serotonin in the nucleus. Nature 2019; 567:464-465. [DOI: 10.1038/d41586-019-00532-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Farrelly LA, Thompson RE, Zhao S, Lepack AE, Lyu Y, Bhanu NV, Zhang B, Loh YHE, Ramakrishnan A, Vadodaria KC, Heard KJ, Erikson G, Nakadai T, Bastle RM, Lukasak BJ, Zebroski H, Alenina N, Bader M, Berton O, Roeder RG, Molina H, Gage FH, Shen L, Garcia BA, Li H, Muir TW, Maze I. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 2019; 567:535-539. [PMID: 30867594 PMCID: PMC6557285 DOI: 10.1038/s41586-019-1024-7] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Chemical modifications of histones can mediate diverse DNA-templated processes, including gene transcription1-3. Here we provide evidence for a class of histone post-translational modification, serotonylation of glutamine, which occurs at position 5 (Q5ser) on histone H3 in organisms that produce serotonin (also known as 5-hydroxytryptamine (5-HT)). We demonstrate that tissue transglutaminase 2 can serotonylate histone H3 tri-methylated lysine 4 (H3K4me3)-marked nucleosomes, resulting in the presence of combinatorial H3K4me3Q5ser in vivo. H3K4me3Q5ser displays a ubiquitous pattern of tissue expression in mammals, with enrichment observed in brain and gut, two organ systems responsible for the bulk of 5-HT production. Genome-wide analyses of human serotonergic neurons, developing mouse brain and cultured serotonergic cells indicate that H3K4me3Q5ser nucleosomes are enriched in euchromatin, are sensitive to cellular differentiation and correlate with permissive gene expression, phenomena that are linked to the potentiation of TFIID4-6 interactions with H3K4me3. Cells that ectopically express a H3 mutant that cannot be serotonylated display significantly altered expression of H3K4me3Q5ser-target loci, which leads to deficits in differentiation. Taken together, these data identify a direct role for 5-HT, independent from its contributions to neurotransmission and cellular signalling, in the mediation of permissive gene expression.
Collapse
Affiliation(s)
- Lorna A Farrelly
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Shuai Zhao
- Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ashley E Lepack
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yang Lyu
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Baichao Zhang
- Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yong-Hwee E Loh
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Krishna C Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Kelly J Heard
- Laboratory of Genetics, The Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Galina Erikson
- Laboratory of Genetics, The Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Ryan M Bastle
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Henry Zebroski
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Olivier Berton
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Li Shen
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Ian Maze
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
7
|
Role of Transglutaminase 2 in Migration of Tumor Cells and How Mouse Models Fit. Med Sci (Basel) 2018; 6:medsci6030070. [PMID: 30200219 PMCID: PMC6164270 DOI: 10.3390/medsci6030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
A search for the "magic bullet", a molecule, the targeting abilities of which could stop the migration of tumor cells, is currently underway, but remains in the early stages. There are still many unknowns regarding the cell migration. The main approach is the employment of mouse models, that are sources of valuable information, but still cannot answer all of the questions. One of the molecules of interest is Transglutaminase 2 (TG2). It is a well-described molecule involved in numerous pathways and elevated in metastatic tumors. The question remains whether mice and humans can give the same answer considering TG2.
Collapse
|
8
|
Kang T, Jensen P, Solovyeva V, Brewer JR, Larsen MR. Dynamic Changes in the Protein Localization in the Nuclear Environment in Pancreatic β-Cell after Brief Glucose Stimulation. J Proteome Res 2018. [PMID: 29518335 DOI: 10.1021/acs.jproteome.7b00930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Characterization of molecular mechanisms underlying pancreatic β-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of β-cells after brief, high glucose stimulation. We compared purified nuclei derived from β-cells stimulated with 17 mM glucose for 0, 2, and 5 min using quantitative proteomics, a time frame that most likely does not result in translation of new protein in the cell. Among the differentially regulated proteins, we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import or export to/from the nucleus to the cytoplasm. Putative insulin mRNA transcription-associated factors were identified among the regulated proteins, and they were cross-validated by Western blotting and confocal immunofluorescence imaging. Collectively, our data suggest that protein translocation between the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Taewook Kang
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Pia Jensen
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Vita Solovyeva
- MEMPHYS-Centre for Biomembrane Physics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Jonathan R Brewer
- MEMPHYS-Centre for Biomembrane Physics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Martin R Larsen
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| |
Collapse
|
9
|
Kang T, Jensen P, Huang H, Lund Christensen G, Billestrup N, Larsen MR. Characterization of the Molecular Mechanisms Underlying Glucose Stimulated Insulin Secretion from Isolated Pancreatic β-cells Using Post-translational Modification Specific Proteomics (PTMomics). Mol Cell Proteomics 2017; 17:95-110. [PMID: 29113996 DOI: 10.1074/mcp.ra117.000217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Indexed: 01/01/2023] Open
Abstract
Normal pancreatic islet β-cells (PBCs) abundantly secrete insulin in response to elevated blood glucose levels, in order to maintain an adequate control of energy balance and glucose homeostasis. However, the molecular mechanisms underlying the insulin secretion are unclear. Improving our understanding of glucose-stimulated insulin secretion (GSIS) mechanisms under normal conditions is a prerequisite for developing better interventions against diabetes. Here, we aimed at identifying novel signaling pathways involved in the initial release of insulin from PBCs after glucose stimulation using quantitative strategies for the assessment of phosphorylated proteins and sialylated N-linked (SA) glycoproteins.Islets of Langerhans derived from newborn rats with a subsequent 9-10 days of maturation in vitro were stimulated with 20 mm glucose for 0 min (control), 5 min, 10 min, and 15 min. The isolated islets were subjected to time-resolved quantitative phosphoproteomics and sialiomics using iTRAQ-labeling combined with enrichment of phosphorylated peptides and formerly SA glycopeptides and high-accuracy LC-MS/MS. Using bioinformatics we analyzed the functional signaling pathways during GSIS, including well-known insulin secretion pathways. Furthermore, we identified six novel activated signaling pathways (e.g. agrin interactions and prolactin signaling) at 15 min GSIS, which may increase our understanding of the molecular mechanism underlying GSIS. Moreover, we validated some of the regulated phosphosites by parallel reaction monitoring, which resulted in the validation of eleven new phosphosites significantly regulated on GSIS. Besides protein phosphorylation, alteration in SA glycosylation was observed on several surface proteins on brief GSIS. Interestingly, proteins important for cell-cell interaction, cell movement, cell-ECM interaction and Focal Adhesion (e.g. integrins, semaphorins, and plexins) were found regulated at the level of sialylation, but not in protein expression. Collectively, we believe that this comprehensive Proteomics and PTMomics survey of signaling pathways taking place during brief GSIS of primary PBCs is contributing to understanding the complex signaling underlying GSIS.
Collapse
Affiliation(s)
- Taewook Kang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Pia Jensen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Honggang Huang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Gitte Lund Christensen
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nils Billestrup
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin R Larsen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
10
|
McLaughlin RJ, Spindler MP, van Lummel M, Roep BO. Where, How, and When: Positioning Posttranslational Modification Within Type 1 Diabetes Pathogenesis. Curr Diab Rep 2016; 16:63. [PMID: 27168063 PMCID: PMC4863913 DOI: 10.1007/s11892-016-0752-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoreactive T cells specific for islet autoantigens develop in type 1 diabetes (T1D) by escaping central as well as peripheral tolerance. The current paradigm for development of islet autoimmunity is just beginning to include the contribution of posttranslationally modified (PTM) islet autoantigens, for which the immune system may be ignorant rather than tolerant. As a result, PTM is the latest promising lead in the quest to understand how the break in peripheral tolerance occurs in T1D. However, it is not completely clear how, where, or when these modifications take place. Currently, only a few PTM antigens have been well-thought-out or identified in T1D, and methods for identifying and characterizing new PTM antigens are rapidly improving. This review will address both reported and potential new sources of modified islet autoantigens and discuss how islet neo-autoantigen generation may contribute to the development and progression of T1D.
Collapse
Affiliation(s)
- Rene J McLaughlin
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Matthew P Spindler
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Menno van Lummel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC, Leiden, The Netherlands.
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Danish Diabetes Academy, Søndre Blvd. 29, 5000, Odense, Denmark.
| |
Collapse
|