1
|
Parry TL, Gilmore LA, Khamoui AV. Pan-cancer secreted proteome and skeletal muscle regulation: insight from a proteogenomic data-driven knowledge base. Funct Integr Genomics 2025; 25:14. [PMID: 39812750 DOI: 10.1007/s10142-024-01524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers. Tumor proteins having significant pan-cancer associations with muscle were referenced against secretome proteins secreted to blood from the Human Protein Atlas, then verified as increased in paired tumor vs. normal tissues in pan-cancer manner. This workflow revealed seven secreted proteins from cancers afflicting kidneys, head and neck, lungs and pancreas that classified as protein-binding activity modulator, extracellular matrix protein or intercellular signaling molecule. Concordance of these biomarkers with validated molecular signatures of cachexia and senescence supported relevance to muscle and cachexia disease biology, and high tumor expression of the biomarker set associated with lower overall survival. In this article, we discuss avenues by which skeletal muscle and cachexia may be regulated by these candidate pan-cancer proteins secreted to blood, and conceptualize a strategy that considers them collectively as a biomarker signature with potential for refinement by data analytics and radiogenomics for predictive testing of future risk in a non-invasive, blood-based panel amenable to broad uptake and early management.
Collapse
Affiliation(s)
- Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
2
|
Song W, Zhang H, Ni J, Hu H, Mao W, Wang K, Peng B. ALKBH5 promotes malignant proliferation of renal clear cell carcinoma by activating the MAPK pathway through binding to HNRNPDL. Int Immunopharmacol 2025; 145:113776. [PMID: 39657539 DOI: 10.1016/j.intimp.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
It is well established that ALKBH5 plays a crucial role in the malignant progression of various types of tumors. However, its role in clear cell renal cell carcinoma (ccRCC) and the underlying regulatory mechanisms remain unclear. In this study, we employed a range of techniques, including protein blotting, real-time quantitative PCR, silver staining, mass spectrometry, co-immunoprecipitation (Co-IP), GST-pull down, and immunofluorescence, to investigate the functions of ALKBH5 in ccRCC and elucidate the specific mechanisms involved. Our results demonstrated that ALKBH5 expression was significantly upregulated in ccRCC. In vitro experiments revealed that ALKBH5 promoted tumor proliferation, invasion, migration, and stemness. In vivo, ALKBH5 was shown to enhance tumor growth and lung metastasis. Mechanistically, our studies suggest that ALKBH5 accelerates the malignant progression of ccRCC by binding to heterogeneous nuclear ribonucleoprotein D-like (HNRNPDL), facilitating the nuclear translocation of MEK, ERK, and p38, and activating downstream targets such as c-Myc and PCNA.
Collapse
Affiliation(s)
- Wei Song
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing 210009, China
| | - Jinliang Ni
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China
| | - Huiqing Hu
- Department of Ultrasound, The Sixth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing 210009, China.
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, School of Medicine, Fudan University, Shanghai 200032, China.
| | - Bo Peng
- Department of Urology, Shanghai Putuo District People's Hospital, School of Medicine, Tongji University, 1291 Jiangning Road, Pu'tuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchang Middle Road, 200072 Shanghai, China.
| |
Collapse
|
3
|
Caraballo EV, Centeno-Girona H, Torres-Velásquez BC, Martir-Ocasio MM, González-Pons M, López-Acevedo SN, Cruz-Correa M. Diagnostic Accuracy of a Blood-Based Biomarker Panel for Colorectal Cancer Detection: A Pilot Study. Cancers (Basel) 2024; 16:4176. [PMID: 39766076 PMCID: PMC11674677 DOI: 10.3390/cancers16244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Colorectal cancer (CRC) is a leading cause of death worldwide. Despite its preventability through screening, compliance still needs to improve due to the invasiveness of current tools. There is a growing demand for validated molecular biomarker panels for minimally invasive blood-based CRC screening. This study assessed the diagnostic accuracy of four promising blood-based CRC biomarkers, individually and in combination. Methods: This case-control study involved plasma samples from 124 CRC cases and 124 age- and sex-matched controls. Biomarkers tested included methylated DNA encoding the Septin-9 gene (mSEPT9) using Epi proColon® 2.0 CE, insulin-like growth factor binding protein 2 (IGFBP2), dickkopf-3 (DKK3), and pyruvate kinase M2 (PKM2) by ELISA. Diagnostic accuracy was measured using the receiver operating characteristic (ROC), area under the curve (AUC), as well as sensitivity and specificity. Results: Diagnostic accuracy for mSEPT9, IGFBP2, DKK3, and PKM2 was 62.9% (95% CI: 56.8-62.9%), 69.7% (95% CI: 63.1-69.7%), 61.6% (95% CI: 54.6-61.6%), and 50.8% (95% CI: 43.4-50.8%), respectively. The combined biomarkers yielded an AUC of 74.4% (95% CI: 68.1-80.6%), outperforming all biomarkers except IGFBP2. Conclusions: These biomarkers show potential for developing a minimally invasive CRC detection tool as an alternative to existing approaches, potentially increasing adherence, early detection, and survivorship.
Collapse
Affiliation(s)
- Elba V. Caraballo
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Hilmaris Centeno-Girona
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Brenda Carolina Torres-Velásquez
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Madeline M. Martir-Ocasio
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - María González-Pons
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Sheila N. López-Acevedo
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
| | - Marcia Cruz-Correa
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan 00921, Puerto Rico; (H.C.-G.); (B.C.T.-V.); (M.M.M.-O.); (M.G.-P.); (S.N.L.-A.); (M.C.-C.)
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00921, Puerto Rico
| |
Collapse
|
4
|
Bai W, Huo S, Li J, Yang Y, Zhou G, Shao J. Proteomic analysis of Biliverdin protected cerebral ischemia-reperfusion injury in rats. Sci Rep 2023; 13:20525. [PMID: 37993477 PMCID: PMC10665369 DOI: 10.1038/s41598-023-47119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Biliverdin, a heme metabolite, has been previously reported to alleviate cerebral ischemic reperfusion injury (CIRI). However, the alterations of brain proteome profiles underlying this treatment remain elusive. The objective of this study is to analyze the differential protein expression profile in cerebral cortex of rats involved in anti-CIRI effects of Biliverdin, providing experimental foundation for searching specific marker proteins. Rat model of MCAO/R was established, HE staining, TTC staining, TUNEL staining, and neurological behavioral examination, corner turning test, adhesive removal test, were performed to validate the effects of Biliverdin, and the results indicated that Biliverdin plays a significant role in alleviating CIRI. Furthermore, proteomic analysis of brain tissues of rats subjected to CIRI following Biliverdin treatment was performed using an integrated TMT-based quantitative proteomic approach coupled with LC-MS/MS technology to clarify the comprehensive mechanisms of Biliverdin in CIRI. First, we conducted strict quality control data for TMT experiments. Finally, a total of 7366 proteins were identified, of which 95 proteins were differentially expressed (DEPs) between the CIRI group and the Sham group and 52 between the CIRI and BV groups. In addition, two overlapping proteins among the 147 DEPs, Atg4c and Camlg, were validated by RT-qPCR and western blotting, and their levels were consistent with the results of TMT analysis. Taken together, the current findings firstly mapped comprehensive proteomic changes after CIRI treated with Biliverdin, providing a foundation for developing potentially therapeutic targets of anti-CIRI of Biliverdin and clinically prognostic biomarkers of stroke.
Collapse
Affiliation(s)
- Wenya Bai
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Siying Huo
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Junjie Li
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Yuan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Guilin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Jianlin Shao
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
5
|
Li X, Lu Y, Wen P, Yuan Y, Xiao Z, Shi H, Feng E. Matrine restrains the development of colorectal cancer through regulating the AGRN/Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:809-819. [PMID: 36620879 DOI: 10.1002/tox.23730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Colorectal cancer is a common malignant digestive tract tumor. This study aimed to explore the biological role and potential underlying mechanism of matrine in colorectal cancer. METHODS The mRNA expression of AGRN was measured using RT-qPCR. Cell proliferation, migration, invasion and apoptosis were determined using CCK-8, EdU, transwell assays and flow cytometry, respectively. Xenograft tumor experiment was performed to explore the action of matrine and AGRN on tumor growth in colorectal cancer in vivo. Immunohistochemistry (IHC) assay was applied for AGRN, β-catenin, and c-Myc expression in the tumor tissues from mice. RESULTS Matrine dramatically repressed cell growth and reduced the level of AGRN in colorectal cancer cells. AGRN expression was boosted colorectal cancer tissues and cells. AGRN downregulation depressed cell proliferation, migration, invasion, and enhanced cell apoptosis in colorectal cancer cells. Moreover, matrine showed the anti-tumor effects on colorectal cancer cells via regulating AGRN expression. AGRN knockdown could inactivate the Wnt/β-catenin pathway in colorectal cancer cells. We found that AGRN downregulation exhibited the inhibition action in the progression of colorectal cancer by modulating the Wnt/β-catenin pathway. In addition, matrine could inhibit the activation of the Wnt/β-catenin pathway through regulating AGRN in colorectal cancer cells. Furthermore, xenograft tumor experiment revealed that matrine treatment or AGRN knockdown repressed the development of colorectal cancer via the Wnt/β-catenin pathway in vivo. CONCLUSION Matrine retarded colorectal cancer development by modulating AGRN to inactivate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xianzhe Li
- Department of General Surgery, Nanshi Hospital, Nanyang, China
| | - Ye Lu
- Department of radiation oncology, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Penghao Wen
- Department of Medical Oncology, Nanshi Hospital, Nanyang, China
| | - Yan Yuan
- Department of Radiotherapy, Nanshi Hospital, Nanyang, China
| | - Zhenghong Xiao
- Department of Medical Oncology, Nanshi Hospital, Nanyang, China
| | - Hengwei Shi
- Department of General Surgery, Nanshi Hospital, Nanyang, China
| | - Eryan Feng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| |
Collapse
|
6
|
Tumor Cells-derived exosomal CircRNAs: Novel cancer drivers, molecular mechanisms, and clinical opportunities. Biochem Pharmacol 2022; 200:115038. [DOI: 10.1016/j.bcp.2022.115038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
|
7
|
Mumtaz M, Bijnsdorp IV, Böttger F, Piersma SR, Pham TV, Mumtaz S, Brakenhoff RH, Akhtar MW, Jimenez CR. Secreted protein markers in oral squamous cell carcinoma (OSCC). Clin Proteomics 2022; 19:4. [PMID: 35130834 PMCID: PMC8903575 DOI: 10.1186/s12014-022-09341-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a main cause of oral cancer mortality and morbidity in central south Asia. To improve the clinical outcome of OSCC patients, detection markers are needed, which are preferably non-invasive and thus independent of a tissue biopsy. Methods In the present study, we aimed to identify robust candidate protein biomarkers for non-invasive OSCC diagnosis. To this end, we measured the global protein profiles of OSCC tissue lysates to matched normal adjacent mucosa samples (n = 14) and the secretomes of nine HNSCC cell lines using LC–MS/MS-based proteomics. Results A total of 5123 tissue proteins were identified, of which 205 were robustly up- regulated (p-value < 0.01, fold change > + 2) in OSCC-tissues compared to normal adjacent tissues. The biological process “Secretion” was highly enriched in this set of proteins. Other upregulated biological pathways included “Unfolded Protein Response”, “Spliceosomal complex assembly”, “Protein localization to endosome” and “Interferon Gamma Response”. Transcription factor analysis implicated Creb3L1, ESRRA, YY, ELF2, STAT1 and XBP as potential regulators. Of the 205 upregulated tissue proteins, 132 were identified in the cancer cell line secretomes, underscoring their potential use as non-invasive biofluid markers. To further prioritize our candidate markers for non-invasive OSCC detection, we integrated our data with public biofluid datasets including OSCC saliva, yielding 25 candidate markers for further study. Conclusions We identified several key proteins and processes that are associated with OSCC tissues, underscoring the importance of altered secretion. Cancer-associated OSCC secretome proteins present in saliva have potential to be used as novel non-invasive biomarkers for the diagnosis of OSCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09341-5.
Collapse
Affiliation(s)
- Madiha Mumtaz
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Irene V Bijnsdorp
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Urology, Cancer Center Amsterdam, Amsterdam UMC, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Franziska Böttger
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Sanchez-Martin V, Schneider DA, Ortiz-Gonzalez M, Soriano-Lerma A, Linde-Rodriguez A, Perez-Carrasco V, Gutierrez-Fernandez J, Cuadros M, González C, Soriano M, Garcia-Salcedo JA. Targeting ribosomal G-quadruplexes with naphthalene-diimides as RNA polymerase I inhibitors for colorectal cancer treatment. Cell Chem Biol 2021; 28:1590-1601.e4. [PMID: 34166611 DOI: 10.1016/j.chembiol.2021.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Guanine quadruplexes (G4s) are non-canonical nucleic acid structures commonly found in regulatory genomic regions. G4 targeting has emerged as a therapeutic approach in cancer. We have screened naphthalene-diimides (NDIs), a class of G4 ligands, in a cellular model of colorectal cancer (CRC). Here, we identify the leading compound T5 with a potent and selective inhibition of cell growth by high-affinity binding to G4s in ribosomal DNA, impairing RNA polymerase I (Pol I) elongation. Consequently, T5 induces a rapid inhibition of Pol I transcription, nucleolus disruption, proteasome-dependent Pol I catalytic subunit A degradation and autophagy. Moreover, we attribute the higher selectivity of carbohydrate-conjugated T5 for tumoral cells to its preferential uptake through the overexpressed glucose transporter 1. Finally, we succinctly demonstrate that T5 could be explored as a therapeutic agent in a patient cohort with CRC. Therefore, we report a mode of action for these NDIs involving ribosomal G4 targeting.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain; Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada 18016, Spain
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matilde Ortiz-Gonzalez
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Centre for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, Almeria 04001, Spain
| | - Ana Soriano-Lerma
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Physiology, University of Granada, Granada 18011, Spain
| | - Angel Linde-Rodriguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain
| | - Virginia Perez-Carrasco
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain
| | - Jose Gutierrez-Fernandez
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain; Department of Microbiology, University of Granada, Granada 18011, Spain
| | - Marta Cuadros
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada 18016, Spain
| | - Carlos González
- Instituto de Química Física "Rocasolano", CSIC, Madrid 28006, Spain
| | - Miguel Soriano
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Centre for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, Almeria 04001, Spain
| | - Jose A Garcia-Salcedo
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain.
| |
Collapse
|
9
|
Impact of alternative splicing on mechanisms of resistance to anticancer drugs. Biochem Pharmacol 2021; 193:114810. [PMID: 34673012 DOI: 10.1016/j.bcp.2021.114810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.
Collapse
|
10
|
Bahrami A, Moradi Binabaj M, A Ferns G. Exosomes: Emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed Pharmacother 2021; 141:111882. [PMID: 34218003 DOI: 10.1016/j.biopha.2021.111882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small cell derived membrane nano-vesicles that carry various components including lipids, proteins and nucleic acids. There is accumulating evidence that exosomes have a role in tumorigenesis, tumor invasiveness and metastasis. Furthermore, oncogene mutation may influence exosome release from tumor cells. Exosomes may induce colorectal cancer by altering signaling cascades such as the Wnt/β-catenin and KRAS pathways that are involved in cell proliferation, apoptosis, dissemination, angiogenesis, and drug resistance. The aim of this review was to overview recent findings evaluating the association between tumor cells-derived exosomes and their content in modulating signaling pathways in colorectal cancer.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
11
|
Vaes N, Schonkeren SL, Rademakers G, Holland AM, Koch A, Gijbels MJ, Keulers TG, de Wit M, Moonen L, Van der Meer JRM, van den Boezem E, Wolfs TGAM, Threadgill DW, Demmers J, Fijneman RJA, Jimenez CR, Vanden Berghe P, Smits KM, Rouschop KMA, Boesmans W, Hofstra RMW, Melotte V. Loss of enteric neuronal Ndrg4 promotes colorectal cancer via increased release of Nid1 and Fbln2. EMBO Rep 2021; 22:e51913. [PMID: 33890711 PMCID: PMC8183412 DOI: 10.15252/embr.202051913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4-/- ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4-/- ENS cell secretome, which is enriched for Nidogen-1 (Nid1) and Fibulin-2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS-derived Nidogen-1 and Fibulin-2 enhance colorectal carcinogenesis.
Collapse
Affiliation(s)
- Nathalie Vaes
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Simone L Schonkeren
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Glenn Rademakers
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Amy M Holland
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Alexander Koch
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Marion J Gijbels
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Molecular GeneticsCardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical CenterAmsterdamThe Netherlands
| | - Tom G Keulers
- Department of RadiotherapyGROW‐School for Oncology and Developmental Biology and Comprehensive Cancer Center Maastricht MUMC+Maastricht UniversityMaastrichtThe Netherlands
| | - Meike de Wit
- Department of Medical Oncology and Oncoproteomics LaboratoryCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Laura Moonen
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jaleesa R M Van der Meer
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Edith van den Boezem
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tim G A M Wolfs
- Department of PediatricsGROW‐School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - David W Threadgill
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterCollege StationTXUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Jeroen Demmers
- Proteomics CenterErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Connie R Jimenez
- Department of Medical Oncology and Oncoproteomics LaboratoryCancer Center AmsterdamVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS) and Translational Research Center for Gastrointestinal Disorders (TARGID)Department of Chronic Diseases, Metabolism and AgeingKU LeuvenLeuvenBelgium
| | - Kim M Smits
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Kasper M A Rouschop
- Department of RadiotherapyGROW‐School for Oncology and Developmental Biology and Comprehensive Cancer Center Maastricht MUMC+Maastricht UniversityMaastrichtThe Netherlands
| | - Werend Boesmans
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Biomedical Research Institute (BIOMED)Hasselt UniversityHasseltBelgium
| | - Robert M W Hofstra
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Veerle Melotte
- Department of PathologyGROW–School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
12
|
Garcia de Durango CR, Monteiro MN, Bijnsdorp IV, Pham TV, De Wit M, Piersma SR, Knol JC, Pérez-Gordo M, Fijneman RJA, Vidal-Vanaclocha F, Jimenez CR. Lipopolysaccharide-regulated secretion of soluble and vesicle-based proteins from a panel of colorectal cancer cell lines. Proteomics Clin Appl 2021; 15:e1900119. [PMID: 33587312 DOI: 10.1002/prca.201900119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE To mimic the perioperative microenvironment where bacterial products get in contact with colorectal cancer (CRC) cells and study its impact on protein release, we exposed six CRC cell lines to lipopolysaccharide (LPS) and investigated the effect on the secretome using in-depth mass spectrometry-based proteomics. EXPERIMENTAL DESIGN Cancer cell secretome was harvested in bio-duplicate after LPS treatment, and separated in EV and soluble secretome (SS) fractions. Gel-fractionated proteins were analysed by label-free nano-liquid chromatography coupled to tandem mass spectrometry. NF-κB activation, triggered upon LPS treatment, was evaluated. RESULTS We report a CRC secretome dataset of 5601 proteins. Comparison of all LPS-treated cells with controls revealed 37 proteins with altered abundance in the SS, including RPS25; and 13 in EVs, including HMGB1. Comparing controls and LPS-treated samples per cell line, revealed 564 significant differential proteins with fold-change >3. The LPS-induced release of RPS25 was validated by western blot. CONCLUSIONS AND CLINICAL RELEVANCE Bacterial endotoxin has minor impact on the global CRC cell line secretome, yet it may alter protein release in a cell line-specific manner. This modulation might play a role in orchestrating the development of a permissive environment for CRC liver metastasis, especially through EV-communication.
Collapse
Affiliation(s)
- Cira R Garcia de Durango
- Instituto de Medicina Molecular Aplicada, Universidad CEU San Pablo, Pathology Institute Munich, DKTK Partner Site, Madrid, Munich, Spain, Germany
| | - Madalena N Monteiro
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Irene V Bijnsdorp
- Department of Urology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Meike De Wit
- Department of Urology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander Rogier Piersma
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jaco C Knol
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marina Pérez-Gordo
- Instituto de Medicina Molecular Aplicada, Universidad CEU San Pablo, Pathology Institute Munich, DKTK Partner Site, Madrid, Munich, Spain, Germany
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fernando Vidal-Vanaclocha
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| | - Connie R Jimenez
- Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Yao J, Huang X, Ren J. In situ determination of secretory kinase Fam20C from living cells using fluorescence correlation spectroscopy. Talanta 2021; 232:122473. [PMID: 34074441 DOI: 10.1016/j.talanta.2021.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Secretory proteins constitute a biologically crucial subset of proteins for regulation of some pathological and physiological processes, and they have become very important biomarkers in clinical diagnosis and therapeutic targets. So far, secretory protein functions and mechanisms have not been fully understood due to methodological limitations in detection of low-abundance proteins against medium background. Here, we propose a strategy to determine secretory protein from living cells in situ using fluorescence correlation spectroscopy (FCS). In this study, the recombinant protein Fam20C with SNAP-tag was used as a model protein, and O6-benzylguanine (BG) derivatives bearing fluorescent dye as probes. We synthesized three fluorescent probes and investigated their fluorescent properties and diffusion behaviors in solution, and found the probe BG-Bodipy-561 more suitable for in situ labeling of Fam20C. We confirmed the specific binding of the probe to the target protein by combining FCS and in-gel fluorescence scanning methods. We studied the effects of some factors of the secretory Fam20C, and found that RNA interference significantly inhibited the synthesis of secretory fused Fam20C, and myriocin had no significant effect on the expression of secretory Fam20C, which indirectly illustrated that sphingolipid signaling can regulate the Fam20C activity. We believe that FCS is a very promising method to analyze secretory proteins from living cells in situ.
Collapse
Affiliation(s)
- Jun Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
14
|
Dalal N, Jalandra R, Sharma M, Prakash H, Makharia GK, Solanki PR, Singh R, Kumar A. Omics technologies for improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives. Biomed Pharmacother 2020; 131:110648. [PMID: 33152902 DOI: 10.1016/j.biopha.2020.110648] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) ranks third among the most commonly occurring cancers worldwide, and it causes half a million deaths annually. Alongside mechanistic study for CRC detection and treatment by conventional techniques, new technologies have been developed to study CRC. These technologies include genomics, transcriptomics, proteomics, and metabolomics which elucidate DNA markers, RNA transcripts, protein and, metabolites produced inside the colon and rectum part of the gut. All these approaches form the omics arena, which presents a remarkable opportunity for the discovery of novel prognostic, diagnostic and therapeutic biomarkers and also delineate the underlying mechanism of CRC causation, which may further help in devising treatment strategies. This review also mentions the latest developments in metagenomics and culturomics as emerging evidence suggests that metagenomics of gut microbiota has profound implications in the causation, prognosis, and treatment of CRC. A majority of bacteria cannot be studied as they remain unculturable, so culturomics has also been strengthened to develop culture conditions suitable for the growth of unculturable bacteria and identify unknown bacteria. The overall purpose of this review is to succinctly evaluate the application of omics technologies in colorectal cancer research for improving the diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India; Department of Environmental Science, Satyawati College, Delhi University, Delhi 110052, India
| | - Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India; Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, Delhi 110052, India.
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
15
|
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020; 53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gerrit Jansen
- Amsterdam Immunology and Rheumatology Center, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
16
|
Secretome Proteomic Approaches for Biomarker Discovery: An Update on Colorectal Cancer. ACTA ACUST UNITED AC 2020; 56:medicina56090443. [PMID: 32878319 PMCID: PMC7559921 DOI: 10.3390/medicina56090443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Searching for new cancer-related biomarkers is a key priority for the early detection of solid tumors, such as colorectal cancer (CRC), in clinically relevant biological fluids. The cell line and/or tumor tissue secretome represents a valuable resource for discovering novel protein markers secreted by cancer cells. The advantage of a secretome analysis is the reduction of the large dynamic range characterizing human plasma/serum, and the simultaneous enrichment of low abundance cancer-secreted proteins, thereby overcoming the technical limitations underlying the direct search in blood samples. In this review, we provided a comprehensive overview of recent studies on the CRC secretome for biomarker discovery, focusing both on methodological and technical aspects of secretome proteomic approaches and on biomarker-independent validation in CRC patient samples (blood and tissues). Secretome proteomics are mainly based on LC-MS/MS analyses for which secretome samples are either in-gel or in-solution trypsin-digested. Adequate numbers of biological and technical replicates are required to ensure high reproducibility and robustness of the secretome studies. Moreover, another major challenge is the accuracy of proteomic quantitative analysis performed by label-free or labeling methods. The analysis of differentially expressed proteins in the CRC secretome by using bioinformatic tools allowed the identification of potential biomarkers for early CRC detection. In this scenario, this review may help to follow-up the recent secretome studies in order to select promising circulating biomarkers to be validated in larger screenings, thereby contributing toward a complete translation in clinical practice.
Collapse
|
17
|
Mantini G, Vallés AM, Le Large TYS, Capula M, Funel N, Pham TV, Piersma SR, Kazemier G, Bijlsma MF, Giovannetti E, Jimenez CR. Co-expression analysis of pancreatic cancer proteome reveals biology and prognostic biomarkers. Cell Oncol (Dordr) 2020; 43:1147-1159. [PMID: 32860207 PMCID: PMC7716908 DOI: 10.1007/s13402-020-00548-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose Despite extensive biological and clinical studies, including comprehensive genomic and transcriptomic profiling efforts, pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease, with a poor survival and limited therapeutic options. The goal of this study was to assess co-expressed PDAC proteins and their associations with biological pathways and clinical parameters. Methods Correlation network analysis is emerging as a powerful approach to infer tumor biology from omics data and to prioritize candidate genes as biomarkers or drug targets. In this study, we applied a weighted gene co-expression network analysis (WGCNA) to the proteome of 20 surgically resected PDAC specimens (PXD015744) and confirmed its clinical value in 82 independent primary cases. Results Using WGCNA, we obtained twelve co-expressed clusters with a distinct biology. Notably, we found that one module enriched for metabolic processes and epithelial-mesenchymal-transition (EMT) was significantly associated with overall survival (p = 0.01) and disease-free survival (p = 0.03). The prognostic value of three proteins (SPTBN1, KHSRP and PYGL) belonging to this module was confirmed using immunohistochemistry in a cohort of 82 independent resected patients. Risk score evaluation of the prognostic signature confirmed its association with overall survival in multivariate analyses. Finally, immunofluorescence analysis confirmed co-expression of SPTBN1 and KHSRP in Hs766t PDAC cells. Conclusions Our WGCNA analysis revealed a PDAC module enriched for metabolic and EMT-associated processes. In addition, we found that three of the proteins involved were associated with PDAC survival. Electronic supplementary material The online version of this article (10.1007/s13402-020-00548-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Mantini
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Fondazione Pisana Per La Scienza, Pisa, Italy
| | - A M Vallés
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - T Y S Le Large
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, Univ of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands
| | - M Capula
- Fondazione Pisana Per La Scienza, Pisa, Italy
| | - N Funel
- U.O. Anatomia ed Istologia Patologica II Azienda Ospedaliero Universitaria Pisana , Pisa, Italy
| | - T V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - S R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - G Kazemier
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands
| | - M F Bijlsma
- U.O. Anatomia ed Istologia Patologica II Azienda Ospedaliero Universitaria Pisana , Pisa, Italy.,Oncode Institute, Amsterdam, The Netherlands
| | - E Giovannetti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands. .,Fondazione Pisana Per La Scienza, Pisa, Italy.
| | - C R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Zheng X, Xu K, Zhou B, Chen T, Huang Y, Li Q, Wen F, Ge W, Wang J, Yu S, Sun L, Zhu L, Liu W, Gao H, Yue L, Cai X, Zhang Q, Ruan G, Zhu T, Wu Z, Zhu Y, Shao Y, Guo T, Zheng S. A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J Extracell Vesicles 2020; 9:1750202. [PMID: 32363013 PMCID: PMC7178829 DOI: 10.1080/20013078.2020.1750202] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Early screening for colorectal cancer (CRC) is essential to improve its prognosis. Liquid biopsies are increasingly being considered for diagnosing cancer due to low invasiveness and high reproducibility. In addition, circulating extracellular vesicles (crEVs, extracellular vesicles isolated from plasma) expressing tumour-specific proteins are potential biomarkers for various cancers. Here, we present a data-independent acquisition (DIA)-mass spectrometry (MS)-based diagnostic method for liquid biopsies. Methods: Extracellular vesicles (EVs) were isolated from culture supernatants of human CRC cell lines, and plasma of patients with CRC at different tumour stages, by overnight ultracentrifugation coupled with sucrose density gradient centrifugation. Tumour-specific EV proteins were prioritized using Tandem Mass Tag (TMT)-based shotgun proteomics and phosphoproteomics. The results were verified in a second independent cohort and a mouse tumour-bearing model using Western blotting (WB). The candidate biomarkers were further validated in a third cohort by DIA-MS. Finally, the DIA-MS methodology was accelerated to permit high-throughput detection of EV biomarkers in another independent cohort of patients with CRC and healthy controls. Results: High levels of total and phosphorylated fibronectin 1 (FN1) in crEVs, haptoglobin (HP), S100A9 and fibrinogen α chain (FGA) were significantly associated with cancer progression. FGA was the most dominant biomarker candidate. Analysis of the human CRC cell lines and the mouse model indicated that FGA+ crEVs were likely released by CRC cells. Furthermore, fast DIA-MS and parallel reaction monitoring (PRM)-MS both confirmed that FGA+ crEVs could distinguish colon adenoma with an area of curve (AUC) in the receiver operating characteristic (ROC) curve of 0.949 and patients with CRC (AUC of ROC is 1.000) from healthy individuals. The performance outperformed conventional tumour biomarkers. The DIA-MS quantification of FGA+ crEVs among three groups agreed with that from PRM-MS. Conclusion: DIA-MS detection of FGA+ crEVs is a potential rapid and non-invasive screening tool to identify early stage CRC. Abbreviations: FGA: fibrinogen α chain; CRC: colorectal cancer; crEVs: circulating extracellular vesicles; EV: extracellular vesicles;MS: mass spectrometry; WB: Western blotting; ROC: receiver operating characteristic; PRM: Parallel Reaction Monitoring; GPC1: Glypican-1; GO: Gene ontology; TEM: transmission electron microscopy; FN1: Fibronectin 1; HP: haptoglobin; TMT: Tandem Mass Tag; LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; DIA: data-independent acquisition; DDA: data-dependent acquisition; CiRT: Common internal Retention Time standards;AGC: Automatic gain control; AUC: area under curve.
Collapse
Affiliation(s)
- Xi Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kailun Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Biting Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qilong Li
- Institute of Cancer Research and Prevention of Jiashan County, Jiashan, Zhejiang, China
| | - Fei Wen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiting Ge
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shaojun Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lifeng Sun
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Liang Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wei Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Huanhuan Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Liang Yue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Xue Cai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Qiushi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Guan Ruan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Tiansheng Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Zhicheng Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Yingkuan Shao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Rickelt S, Condon C, Mana M, Whittaker C, Pfirschke C, Roper J, Patil DT, Brown I, Mattia AR, Zukerberg L, Zhao Q, Chetty R, Lauwers GY, Neyaz A, Leijssen LGJ, Boylan K, Yilmaz OH, Deshpande V, Hynes RO. Agrin in the Muscularis Mucosa Serves as a Biomarker Distinguishing Hyperplastic Polyps from Sessile Serrated Lesions. Clin Cancer Res 2020; 26:1277-1287. [PMID: 31852835 PMCID: PMC7073301 DOI: 10.1158/1078-0432.ccr-19-2898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Sessile serrated lesions (SSL) are precursors to colon carcinoma, and their distinction from other polyps, in particular hyperplastic polyps (HP), presents significant diagnostic challenges. We evaluated expression patterns in colonic polyps of previously identified colon carcinoma-associated extracellular matrix (ECM) proteins to identify markers distinguishing SSLs from other polyps. EXPERIMENTAL DESIGN Gene-expression analyses of ECM proteins were performed using publicly available data on preneoplastic colonic polyps. In parallel, we evaluated by IHC the expression of agrin (AGRN) in over 400 colonic polyps, including HP, SSL with and without dysplasia, traditional serrated adenomas (TSA), and tubular adenomas (TA), and compared the consistency of standard histologic diagnosis of SSLs by experienced gastrointestinal pathologists with that of AGRN IHC. RESULTS Differential gene expression analysis and IHC identified AGRN, serine peptidase inhibitor (SERPINE2), and TIMP metallopeptidase inhibitor 1 (TIMP1) elevated in SSLs and HPs but decreased in TAs and absent in normal colon. AGRN-positive basal laminae were noted in all TA, TSA, HP, and SSL in distinguishable patterns, whereas other polyps and normal mucosa were negative. SSL with or without dysplasia consistently showed IHC staining for AGRN in the muscularis mucosae, which was absent in HP, TSA, TA, and other polyps. In contrast, histologic evaluation showed only weak interobserver agreement (kappa value = 0.493) in distinguishing SSLs. CONCLUSIONS Muscularis mucosae-based AGRN immunostaining is a novel biomarker to distinguish SSL from HP, TSA, and TA, with a specificity of 97.1% and sensitivity of 98.9% and can assist in diagnosis of morphologically challenging colonic polyps.
Collapse
Affiliation(s)
- Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Charlene Condon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Swanson Biotechnology Center, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Miyeko Mana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Charlie Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Swanson Biotechnology Center, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Jatin Roper
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Deepa T Patil
- Cleveland Clinic, Department of Pathology, Cleveland, Ohio
| | - Ian Brown
- Envoi Pathology, Kelvin Grove, Queensland, Australia
| | - Anthony R Mattia
- Department of Pathology, North Shore Medical Center, Salem, Massachusetts
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Qing Zhao
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Runjan Chetty
- Department of Pathology, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Azfar Neyaz
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lieve G J Leijssen
- Department of General and Gastrointestinal Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Katherine Boylan
- Department of Pathology, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Omer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
20
|
Le Large TY, Meijer LL, Paleckyte R, Boyd LN, Kok B, Wurdinger T, Schelfhorst T, Piersma SR, Pham TV, van Grieken NC, Zonderhuis BM, Daams F, van Laarhoven HW, Bijlsma MF, Jimenez CR, Giovannetti E, Kazemier G. Combined Expression of Plasma Thrombospondin-2 and CA19-9 for Diagnosis of Pancreatic Cancer and Distal Cholangiocarcinoma: A Proteome Approach. Oncologist 2020; 25:e634-e643. [PMID: 31943574 PMCID: PMC7160420 DOI: 10.1634/theoncologist.2019-0680] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Minimally invasive diagnostic biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC) and distal cholangiocarcinoma (dCCA) are warranted to facilitate accurate diagnosis. This study identified diagnostic plasma proteins based on proteomics of tumor secretome. Materials and Methods Secretome of tumor and normal tissue was collected after resection of PDAC and dCCA. Differentially expressed proteins were measured by mass spectrometry. Selected candidate biomarkers and carbohydrate antigen 19‐9 (CA19‐9) were validated by enzyme‐linked immunosorbent assay in plasma from patients with PDAC (n = 82), dCCA (n = 29), benign disease (BD; n = 30), and healthy donors (HDs; n = 50). Areas under the curve (AUCs) of receiver operator characteristic curves were calculated to determine the discriminative power. Results In tumor secretome, 696 discriminatory proteins were identified, including 21 candidate biomarkers. Thrombospondin‐2 (THBS2) emerged as promising biomarker. Abundance of THBS2 in plasma from patients with cancer was significantly higher compared to HDs (p < .001, AUC = 0.844). Combined expression of THBS2 and CA19‐9 yielded the optimal discriminatory capacity (AUC = 0.952), similarly for early‐ and late‐stage disease (AUC = 0.971 and AUC = 0.911). Remarkably, this combination demonstrated a power similar to CA19‐9 to discriminate cancer from BD (AUC = 0.764), and THBS2 provided an additive value in patients with high expression levels of bilirubin. Conclusion Our proteome approach identified a promising set of candidate biomarkers. The combined plasma expression of THBS2/CA19‐9 is able to accurately distinguish patients with PDAC or dCCA from HD and BD. Implications for Practice The combined plasma expression of thrombospondin‐2 and carbohydrate antigen 19‐9 is able to accurately diagnose patients with pancreatic cancer and distal cholangiocarcinoma. This will facilitate minimally invasive diagnosis for these patients by distinguishing them from healthy individuals and benign diseases. This article identifies diagnostic plasma proteins to distinguish patients with pancreatic ductal adenocarcinoma and distal cholangiocarcinoma from benign disease and health donors and evaluates these new markers for additive value with CA19‐9 at different disease stages.
Collapse
Affiliation(s)
- Tessa Y.S. Le Large
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Laura L. Meijer
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Rosita Paleckyte
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Lenka N.C. Boyd
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Bart Kok
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Tim Schelfhorst
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Nicole C.T. van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Barbara M. Zonderhuis
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Freek Daams
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Maarten F. Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start‐Up Unit, Fondazione Pisana per la Scienza, University of PisaPisaItaly
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU UniversityAmsterdamThe Netherlands
| |
Collapse
|
21
|
Hsu CW, Chang KP, Huang Y, Liu HP, Hsueh PC, Gu PW, Yen WC, Wu CC. Proteomic Profiling of Paired Interstitial Fluids Reveals Dysregulated Pathways and Salivary NID1 as a Biomarker of Oral Cavity Squamous Cell Carcinoma. Mol Cell Proteomics 2019; 18:1939-1949. [PMID: 31315917 PMCID: PMC6773556 DOI: 10.1074/mcp.ra119.001654] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/06/2022] Open
Abstract
Patients with oral cavity squamous cell carcinoma (OSCC) are frequently first diagnosed at an advanced stage, leading to poor prognosis and high mortality rates. Early detection of OSCC using body fluid-accessible biomarkers may improve the prognosis and survival rate of OSCC patients. As tumor interstitial fluid is a proximal fluid enriched with cancer-related proteins, it is a useful reservoir suitable for the discovery of cancer biomarkers and dysregulated biological pathways in tumor microenvironments. Thus, paired interstitial fluids of tumor (TIF) and adjacent noncancerous (NIF) tissues from 10 OSCC patients were harvested and analyzed using one-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). Using label-free spectral counting-based quantification, 113 proteins were found to be up-regulated in the TIFs compared with the NIFs. The gene set enrichment analysis (GSEA) revealed that the differentially expressed TIF proteins were highly associated with aminoacyl tRNA biosynthesis pathway. The elevated levels of 4 proteins (IARS, KARS, WARS, and YARS) involved in the aminoacyl tRNA biosynthesis were verified in the OSCC tissues with immunohistochemistry (IHC). In addition, nidogen-1 (NID1) was selected for verification as an OSCC biomarker. Salivary level of NID1 in OSCC patients (n = 48) was significantly higher than that in the healthy individuals (n = 51) and subjects with oral potentially malignant disorder (OPMD; n = 53). IHC analysis showed that NID1 level in OSCC tissues was increased compared with adjacent noncancerous epithelium (n = 222). Importantly, the elevated NID1 level was correlated with the advanced stages of OSCC, as well as the poor survival of OSCC patients. Collectively, the results suggested that TIF analysis facilitates understanding of the OSCC microenvironment and that salivary NID1 may be a useful biomarker for OSCC.
Collapse
Affiliation(s)
- Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pei-Chun Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Wen Gu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Ching Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
22
|
Oncogenic heterogeneous nuclear ribonucleoprotein D-like modulates the growth and imatinib response of human chronic myeloid leukemia CD34 + cells via pre-B-cell leukemia homeobox 1. Oncogene 2019; 39:443-453. [PMID: 31488872 DOI: 10.1038/s41388-019-0998-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Chronic myeloid leukemia (CML) originates from normal hematopoietic stem cells acquiring BCR-ABL fusion gene, specific BCR-ABL inhibitors (e.g., imatinib mesylate, IM) have greatly improved patient management. However, some patients are still suffering from relapse and drug resistance, which urges better understanding of the growth/survival mechanisms of CML stem/progenitor cells. In the present study, the role and its underlying mechanism of heterogeneous nuclear ribonucleoprotein D-like (HNRPDL) in CML cells were investigated. Firstly, overexpression of HNRPDL promoted the growth of murine BaF3 cells in vitro and induced leukemia in vivo, which was enhanced by co-expression of BCR-ABL. Conversely, HNRPDL silencing inhibited colony-forming cell (CFC) production of CML CD34+ cells and attenuated BCR-ABL induced leukemia. In addition, HNRPDL modulated imatinib response of K562 cells and HNRPDL silencing sensitized CML CD34+ cells to imatinib treatment. Mechanistically, we found the stability of pre-B-cell leukemia homeobox 1 (PBX1) mRNA was sustained by HNRPDL through its binding to a specific motif (ACUAGC) in 3'-untranslated region (3'-UTR) of PBX1. The expression of PBX1 was significantly higher in CML CD34+ cells than that in control cells and PBX silencing inhibited the growth of CML cells and sensitized them to imatinib treatment. In contrast, overexpression of PBX1 elevated the CFC production of normal hematopoietic CD34+ cells and "rescued" HNRPDL silencing induced growth inhibition and imatinib sensitization. Taken together, our data have demonstrated that HNRPDL transforms hematopoietic cells and a novel HNRPDL/PBX1 axis plays an important role in human CML CD34+ cells.
Collapse
|
23
|
Böttger F, Schaaij-Visser TB, de Reus I, Piersma SR, Pham TV, Nagel R, Brakenhoff RH, Thunnissen E, Smit EF, Jimenez CR. Proteome analysis of non-small cell lung cancer cell line secretomes and patient sputum reveals biofluid biomarker candidates for cisplatin response prediction. J Proteomics 2019; 196:106-119. [DOI: 10.1016/j.jprot.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
|
24
|
Hoang VT, Verma D, Godavarthy PS, Llavona P, Steiner M, Gerlach K, Michels BE, Bohnenberger H, Wachter A, Oellerich T, Müller-Kuller U, Weissenberger E, Voutsinas JM, Oehler VG, Farin HF, Zörnig M, Krause DS. The transcriptional regulator FUBP1 influences disease outcome in murine and human myeloid leukemia. Leukemia 2019; 33:1700-1712. [PMID: 30635626 DOI: 10.1038/s41375-018-0358-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 01/20/2023]
Abstract
The transcriptional regulator far upstream element binding protein 1 (FUBP1) acts as an oncoprotein in solid tumor entities and plays a role in the maintenance of hematopoietic stem cells. However, its potential function in leukemia is unknown. In murine models of chronic (CML) and acute myeloid leukemia (AML) induced by BCR-ABL1 and MLL-AF9, respectively, knockdown of Fubp1 resulted in prolonged survival, decreased numbers of CML progenitor cells, decreased cell cycle activity and increased apoptosis. Knockdown of FUBP1 in CML and AML cell lines recapitulated these findings and revealed enhanced DNA damage compared to leukemia cells expressing wild type FUBP1 levels. FUBP1 was more highly expressed in human CML compared to normal bone marrow cells and its expression correlated with disease progression. In AML, higher FUBP1 expression in patient leukemia cells was observed with a trend toward correlation with shorter overall survival. Treatment of mice with AML with irinotecan, known to inhibit topoisomerase I and FUBP1, significantly prolonged survival alone or in combination with cytarabine. In summary, our data suggest that FUBP1 acts as cell cycle regulator and apoptosis inhibitor in leukemia. We demonstrated that FUBP1 might play a role in DNA repair, and its inhibition may improve outcome in leukemia patients.
Collapse
Affiliation(s)
- Van T Hoang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Divij Verma
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | | | - Pablo Llavona
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Marlene Steiner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Katharina Gerlach
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Birgitta E Michels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Hanibal Bohnenberger
- Universitätsmedizin Göttingen, Institute of Pathology, Georg-August-Universität, 37075, Göttingen, Germany
| | - Astrid Wachter
- Universitätsmedizin Göttingen, Department of Medical Statistics, Georg-August-Universität, 37075, Göttingen, Germany
| | - Thomas Oellerich
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,University Hospital Frankfurt, Department of Medicine II, Hematology/Oncology, Frankfurt, Germany
| | - Uta Müller-Kuller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Eva Weissenberger
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Jenna M Voutsinas
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Biostatistics, Seattle, WA, USA
| | - Vivian G Oehler
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Division of Hematology, University of Washington Medical Center, Seattle, WA, USA
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany.
| |
Collapse
|
25
|
Setting up and exploitation of a nano/technological platform for the evaluation of HMGA1b protein in peripheral blood of cancer patients. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 15:231-242. [PMID: 30308301 DOI: 10.1016/j.nano.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023]
|
26
|
Yoon JH, Kim D, Kim J, Lee H, Ghim J, Kang BJ, Song P, Suh PG, Ryu SH, Lee TG. NOTUM Is Involved in the Progression of Colorectal Cancer. Cancer Genomics Proteomics 2018; 15:485-497. [PMID: 30343282 DOI: 10.21873/cgp.20107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There are limitations to current colorectal cancer (CRC)-specific diagnostic methods and therapies. Tumorigenesis proceeds because of interaction between cancer cells and various surrounding cells; discovering new molecular mediators through studies of the CRC secretome is a promising approach for the development of CRC diagnostics and therapies. MATERIALS AND METHODS A comparative secretomic analysis was performed using primary and metastatic human isogenic CRC cells. Proliferation was determined by MTT and thymidine incorporation assay, migration was determined by wound-healing assay (ELISA). The level of palmitoleoyl-protein carboxylesterase (NOTUM) in plasma from patients with CRC was determined by enzyme-linked immunosorbent assay. RESULTS NOTUM expression was increased in metastatic cells. Proliferation was suppressed by inhibiting expression of NOTUM. Knockdown of NOTUM genes inhibited proliferation as well as migration, with possible involvement of p38 and c-JUN N-terminal kinase in this process. The result was verified in patients with CRC. CONCLUSION NOTUM may be a new candidate for diagnostics and therapy of CRC.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jaeyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,NovaCell Technology, Inc., Pohang, Republic of Korea
| | - Hyeongjoo Lee
- NovaCell Technology, Inc., Pohang, Republic of Korea
| | - Jaewang Ghim
- NovaCell Technology, Inc., Pohang, Republic of Korea
| | - Byung Jun Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Parkyong Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Taehoon G Lee
- NovaCell Technology, Inc., Pohang, Republic of Korea
| |
Collapse
|
27
|
Anjo SI, Manadas B. A translational view of cells' secretome analysis - from untargeted proteomics to potential circulating biomarkers. Biochimie 2018; 155:37-49. [PMID: 29782891 DOI: 10.1016/j.biochi.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
|
28
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
29
|
Lee CH, Im EJ, Moon PG, Baek MC. Discovery of a diagnostic biomarker for colon cancer through proteomic profiling of small extracellular vesicles. BMC Cancer 2018; 18:1058. [PMID: 30382917 PMCID: PMC6211419 DOI: 10.1186/s12885-018-4952-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Small extracellular vesicles (small-EVs) are membranous vesicles that contain unique information regarding the condition of cells and contribute to the recruitment and reprogramming of components associated with the tumor environment. Therefore, many researchers have suggested that small-EV proteins are potential biomarkers for diseases such as cancer. Colon cancer (CC) is one of the most common causes of cancer-related deaths worldwide. Biomarkers such as carcinoembryonic antigen (CEA) show low sensitivity (~ 40%), and thus the demand for novel biomarkers for CC diagnosis is increasing. Methods In this study, we identified biomarkers for diagnosing CC through proteomic analysis of small-EVs from CC cell lines. These small-EVs were characterized by western blot analysis, nanoparticle tracking analysis, and transmission electron microscopy and analyzed using mass spectrometry. Results Five selected proteins were found to be upregulated in CC by western blot analysis. Among the candidate proteins, tetraspanin 1 (TSPAN1) was found to be upregulated in plasma EVs from CC patients compared to those from healthy controls (HCs) with 75.7% sensitivity. Conclusions These results suggest that TSPAN1 is a potent non-invasive biomarker for CC detection. Our experimental strategy provides useful insights into the identification of cancer-specific non-invasive biomarkers. Electronic supplementary material The online version of this article (10.1186/s12885-018-4952-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chan-Hyeong Lee
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.,Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Eun-Ju Im
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.,Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Pyong-Gon Moon
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea. .,Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea. .,Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
30
|
Zhang P, Ji D, Hu X, Ni H, Ma W, Zhang X, Liao S, Zeng Z, Zhao Y, Zhou H. Oncogenic heterogeneous nuclear ribonucleoprotein D-like promotes the growth of human colon cancer SW620 cells via its regulation of cell-cycle. Acta Biochim Biophys Sin (Shanghai) 2018; 50:880-887. [PMID: 30052712 DOI: 10.1093/abbs/gmy085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins. Heterogeneous nuclear ribonucleoprotein D-like (HNRPDL) is a member of this family. Though aberrant expression of HNRPDL has been reported in a few cancers, whether HNRPDL is deregulated in colon cancer patients and what role this protein plays in these cells are not known yet. In this study, we found that HNRPDL was significantly up-regulated in colon cancer specimens than control. We also demonstrated that HNRPDL silencing inhibited the growth of SW620 cells both in vitro and in vivo. Conversely, we constructed a retroviral vector to deliver HNRPDL into non-malignant NIH-3T3 cells and injected these cells into nude mice. HNRPDL-overexpressing NIH-3T3 cells generated tumors in nude mice but not the control cells. Mechanistically, HNRPDL promoted cell-cycle progression associated with enhanced expressions of cyclin D3 and Ki-67 but decreased expressions of p53 and p21. Taken together, our data demonstrate that HNRPDL is aberrantly expressed in colon cancer cells, which promotes the growth of these cells by activating cell-cycle progression.
Collapse
Affiliation(s)
- Pengshan Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Dehuan Ji
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Xiaohui Hu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hengli Ni
- Department of Pathology, Medical College of Soochow University, Suzhou, China
| | - Wenjuan Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Xiuyan Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Shibing Liao
- Department of Oncology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zheng Zeng
- Department of Oncology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yun Zhao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- The Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haixia Zhou
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Lee PY, Chin SF, Low TY, Jamal R. Probing the colorectal cancer proteome for biomarkers: Current status and perspectives. J Proteomics 2018; 187:93-105. [PMID: 29953962 DOI: 10.1016/j.jprot.2018.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/13/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Biomarkers that can facilitate better clinical management of CRC are in high demand to improve patient outcome and to reduce mortality. In this regard, proteomic analysis holds a promising prospect in the hunt of novel biomarkers for CRC and in understanding the mechanisms underlying tumorigenesis. This review aims to provide an overview of the current progress of proteomic research, focusing on discovery and validation of diagnostic biomarkers for CRC. We will summarize the contributions of proteomic strategies to recent discoveries of protein biomarkers for CRC and also briefly discuss the potential and challenges of different proteomic approaches in biomarker discovery and translational applications.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia.
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Zheng Z, Xu L, Zhang S, Li W, Tou F, He Q, Rao J, Shen Q. Peiminine inhibits colorectal cancer cell proliferation by inducing apoptosis and autophagy and modulating key metabolic pathways. Oncotarget 2018; 8:47619-47631. [PMID: 28496003 PMCID: PMC5564592 DOI: 10.18632/oncotarget.17411] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/29/2017] [Indexed: 01/18/2023] Open
Abstract
Peiminine, a compound extracted from the bulbs of Fritillaria thunbergii and traditionally used as a medication in China and other Asian countries, was reported to inhibit colorectal cancer cell proliferation and tumor growth by inducing autophagic cell death. However, its mechanism of anticancer action is not well understood, especially at the metabolic level, which was thought to primarily account for peiminine's efficacy against cancer. Using an established metabolomic profiling platform combining ultra-performance liquid chromatography/tandem mass spectrometry with gas chromatography/mass spectrometry, we identified metabolic alterations in colorectal cancer cell line HCT-116 after peiminine treatment. Among the identified 236 metabolites, the levels of 57 of them were significantly (p < 0.05) different between peiminine-treated and -untreated cells in which 45 metabolites were increased and the other 12 metabolites were decreased. Several of the affected metabolites, including glucose, glutamine, oleate (18:1n9), and lignocerate (24:0), may be involved in regulation of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway and in the oxidative stress response upon peiminine exposure. Peiminine predominantly modulated the pathways responsible for metabolism of amino acids, carbohydrates, and lipids. Collectively, these results provide new insights into the mechanisms by which peiminine modulates metabolic pathways to inhibit colorectal cancer cell growth, supporting further exploration of peiminine as a potential new strategy for treating colorectal cancer.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China.,Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liting Xu
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China
| | - Shuofeng Zhang
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing, 100102, PR China
| | - Wuping Li
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China
| | - Fangfang Tou
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China
| | - Qinsi He
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China
| | - Jun Rao
- Department of Internal Medicine 5th Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, PR China.,School of Graduate Study, Medical College of Nanchang University, Nanchang, 330029, PR China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
33
|
Piccoli M, D'Angelo E, Crotti S, Sensi F, Urbani L, Maghin E, Burns A, De Coppi P, Fassan M, Rugge M, Rizzolio F, Giordano A, Pilati P, Mammano E, Pucciarelli S, Agostini M. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J Cell Physiol 2018; 233:5937-5948. [PMID: 29244195 DOI: 10.1002/jcp.26403] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) cancer models are overlooking the scientific landscape with the primary goal of bridging the gaps between two-dimensional (2D) cell lines, animal models and clinical research. Here, we describe an innovative tissue engineering approach applied to colorectal cancer (CRC) starting from decellularized human biopsies in order to generate an organotypic 3D-bioactive model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence and scanning electron microscopy analyses. Mass spectrometry of proteome and secretome confirmed a different stromal composition between decellularized healthy mucosa and CRC in terms of structural and secreted proteins. Importantly, we proved that our 3D acellular matrices retained their biological properties: using CAM assay, we observed a decreased angiogenic potential in decellularized CRC compared with healthy tissue, caused by direct effect of DEFA3. We demonstrated that following a 5 days of recellularization with HT-29 cell line, the 3D tumor matrices induced an over-expression of IL-8, a DEFA3-mediated pathway and a mandatory chemokine in cancer growth and proliferation. Given the biological activity maintained by the scaffolds after decellularization, we believe this approach is a powerful tool for future pre-clinical research and screenings.
Collapse
Affiliation(s)
- Martina Piccoli
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Edoardo D'Angelo
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Sara Crotti
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Francesca Sensi
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Department of Woman and Child Health, University of Padua, Padua, Italy
| | - Luca Urbani
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Edoardo Maghin
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Alan Burns
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy.,Veneto Tumor Registry, Padua, Italy
| | - Flavio Rizzolio
- Department of Translational Research, Pathology Unit, IRCCS-National Cancer Institute, Aviano, Italy.,Department of Molecular Sciences and Nanosystems at Ca' Foscari University, Venice, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | | | | | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Marco Agostini
- Nanoinspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
34
|
Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer Metastasis Rev 2018; 37:125-145. [PMID: 29392535 DOI: 10.1007/s10555-017-9710-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achievements in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker discovery and provide insights into the challenges faced in their evaluation and validation.
Collapse
|
35
|
Costanza B, Turtoi A, Bellahcène A, Hirano T, Peulen O, Blomme A, Hennequière V, Mutijima E, Boniver J, Meuwis MA, Josse C, Koopmansch B, Segers K, Yokobori T, Fahmy K, Thiry M, Coimbra C, Garbacki N, Colige A, Baiwir D, Bours V, Louis E, Detry O, Delvenne P, Nishiyama M, Castronovo V. Innovative methodology for the identification of soluble biomarkers in fresh tissues. Oncotarget 2018. [PMID: 29535834 PMCID: PMC5828218 DOI: 10.18632/oncotarget.24366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Touko Hirano
- Laboratory for Analytical Instruments, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Vincent Hennequière
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Eugene Mutijima
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Jacques Boniver
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Claire Josse
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Benjamin Koopmansch
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Karin Segers
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Karim Fahmy
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cell Biology, Faculty of Sciences, University of Liège, Liège, Belgium
| | - Carla Coimbra
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Nancy Garbacki
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium.,GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Vincent Bours
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Edouard Louis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
36
|
Lim LC, Lim YM. Proteome Heterogeneity in Colorectal Cancer. Proteomics 2018; 18. [PMID: 29316255 DOI: 10.1002/pmic.201700169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/17/2017] [Indexed: 01/26/2023]
Abstract
Tumor heterogeneity is an important feature of colorectal cancer (CRC) manifested by dynamic changes in gene expression, protein expression, and availability of different tumor subtypes. Recent publications in the past 10 years have revealed proteome heterogeneity between different colorectal tumors and within the same tumor site. This paper reviews recent research works on the proteome heterogeneity in CRC, which includes the heterogeneity within a single tumor (intratumor heterogeneity), between different anatomical sites at the same organ, and between primary and metastatic sites (intertumor heterogeneity). The potential use of proteome heterogeneity in precision medicine and its implications in biomarker discovery and therapeutic outcomes will be discussed. Identification of the unique proteome landscape between and within individual tumors is imperative for understanding cancer biology and the management of CRC patients.
Collapse
Affiliation(s)
- Lay Cheng Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, University of Tunku Abdul Rahman, Selangor, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, University of Tunku Abdul Rahman, Selangor, Malaysia
| |
Collapse
|
37
|
Wang D, Li Q, Li Y, Wang H. The role of MCM5 expression in cervical cancer: Correlation with progression and prognosis. Biomed Pharmacother 2017; 98:165-172. [PMID: 29253764 DOI: 10.1016/j.biopha.2017.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Minichromosome maintenance protein 5 (MCM5) has been suggested overexpressed in cervical cancer, but the clinical value and biological function of MCM5 in cervical cancer is still unknown. In our study, MCM5 mRNA and protein were significantly overexpressed in cervical cancer tissues and cell lines compared with normal cervical tissues and cell lines, and were obviously increased in cervical adenocarcinoma tissues and cell lines in comparison to cervical squamous cell carcinoma tissues and cell lines. In cervical adenocarcinoma patients, we firstly found that MCM5 expression was closely correlated with clinical stage, lymph node metastasis, distant metastasis and histological grade. Univariate and multivariate analysis showed MCM5 high-expression was an independent unfavorable prognostic factor. In conclusion, MCM5 is associated with the malignant status and poor prognosis in cervical adenocarcinoma patients, and modulates cervical adenocarcinoma cells proliferation.
Collapse
Affiliation(s)
- Dan Wang
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, 272000, Shandong, China
| | - Qian Li
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, 272000, Shandong, China
| | - Yichun Li
- Department of Hepatobiliary Surgery, Jining No. 1 People's Hospital, Jining, 272000, Shandong, China
| | - Hongyan Wang
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, 272000, Shandong, China.
| |
Collapse
|
38
|
Cristobal A, van den Toorn HWP, van de Wetering M, Clevers H, Heck AJR, Mohammed S. Personalized Proteome Profiles of Healthy and Tumor Human Colon Organoids Reveal Both Individual Diversity and Basic Features of Colorectal Cancer. Cell Rep 2017; 18:263-274. [PMID: 28052255 DOI: 10.1016/j.celrep.2016.12.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022] Open
Abstract
Diseases at the molecular level are complex and patient dependent, necessitating development of strategies that enable precision treatment to optimize clinical outcomes. Organoid technology has recently been shown to have the potential to recapitulate the in vivo characteristics of the original individual's tissue in a three-dimensional in vitro culture system. Here, we present a quantitative mass-spectrometry-based proteomic analysis and a comparative transcriptomic analysis of human colorectal tumor and healthy organoids derived, in parallel, from seven patients. Although gene and protein signatures can be derived to distinguish the tumor organoid population from healthy organoids, our data clearly reveal that each patient possesses a distinct organoid signature at the proteomic level. We demonstrate that a personalized patient-specific organoid proteome profile can be related to the diagnosis of a patient and with future development contribute to the generation of personalized therapies.
Collapse
Affiliation(s)
- Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Marc van de Wetering
- Princess Maxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 Utrecht, Netherlands
| | - Hans Clevers
- Princess Maxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 Utrecht, Netherlands; Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands.
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands; Department of Biochemistry, University of Oxford, New Biochemistry building, South Parks Road, Oxford OX1 3QU, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
39
|
Bhardwaj M, Erben V, Schrotz-King P, Brenner H. Cell Line Secretome and Tumor Tissue Proteome Markers for Early Detection of Colorectal Cancer: A Systematic Review. Cancers (Basel) 2017; 9:cancers9110156. [PMID: 29144439 PMCID: PMC5704174 DOI: 10.3390/cancers9110156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Objective: In order to find low abundant proteins secretome and tumor tissue proteome data have been explored in the last few years for the diagnosis of colorectal cancer (CRC). In this review we aim to summarize the results of studies evaluating markers derived from the secretome and tumor proteome for blood based detection of colorectal cancer. Methods: Observing the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines PubMed and Web of Science databases were searched systematically for relevant studies published up to 18 July 2017. After screening for predefined eligibility criteria a total of 47 studies were identified. Information on diagnostic performance indicators, methodological procedures and validation was extracted. Functions of proteins were identified from the UniProt database and the the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to assess study quality. Results: Forty seven studies meeting inclusion criteria were identified. Overall, 83 different proteins were identified, with carcinoembryonic Antigen (CEA) being by far the most commonly reported (reported in 24 studies). Evaluation of the markers or marker combinations in blood samples from CRC cases and controls yielded apparently very promising diagnostic performances, with area under the curve >0.9 in several cases, but lack of internal or external validation, overoptimism due to overfitting and spectrum bias due to evaluation in clinical setting rather than screening settings are major concerns. Conclusions: Secretome and tumor proteome-based biomarkers when validated in blood yield promising candidates. However, for discovered protein markers to be clinically applicable as screening tool they have to be specific for early stages and need to be validated externally in larger studies with participants recruited in true screening setting.
Collapse
Affiliation(s)
- Megha Bhardwaj
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Vanessa Erben
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Petra Schrotz-King
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
| | - Hermann Brenner
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| |
Collapse
|
40
|
Papaleo E, Gromova I, Gromov P. Gaining insights into cancer biology through exploration of the cancer secretome using proteomic and bioinformatic tools. Expert Rev Proteomics 2017; 14:1021-1035. [PMID: 28967788 DOI: 10.1080/14789450.2017.1387053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Tumor-associated proteins released by cancer cells and by tumor stroma cells, referred as 'cancer secretome', represent a valuable resource for discovery of potential cancer biomarkers. The last decade was marked by a great increase in number of studies focused on various aspects of cancer secretome including, composition and identification of components externalized by malignant cells and by the components of tumor microenvironment. Areas covered: Here, we provide an overview of achievements in the proteomic analysis of the cancer secretome, elicited through the tumor-associated interstitial fluid recovered from malignant tissues ex vivo or the protein component of conditioned media obtained from cultured cancer cells in vitro. We summarize various bioinformatic tools and approaches and critically appraise their outcomes, focusing on problems and challenges that arise when applied for the analysis of cancer secretomic databases. Expert commentary: Recent achievements in the omics- analysis of structural and metabolic aspects of altered cancer secretome contribute greatly to the various hallmarks of cancer including the identification of clinically significant biomarkers and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Papaleo
- a Danish Cancer Society Research Center, Computational Biology Laboratory , Copenhagen , Denmark
| | - Irina Gromova
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| | - Pavel Gromov
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| |
Collapse
|
41
|
Zanzoni A, Spinelli L, Braham S, Brun C. Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. MICROBIOME 2017; 5:89. [PMID: 28793925 PMCID: PMC5551000 DOI: 10.1186/s40168-017-0307-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/13/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Fusobacterium nucleatum is a gram-negative anaerobic species residing in the oral cavity and implicated in several inflammatory processes in the human body. Although F. nucleatum abundance is increased in inflammatory bowel disease subjects and is prevalent in colorectal cancer patients, the causal role of the bacterium in gastrointestinal disorders and the mechanistic details of host cell functions subversion are not fully understood. RESULTS We devised a computational strategy to identify putative secreted F. nucleatum proteins (FusoSecretome) and to infer their interactions with human proteins based on the presence of host molecular mimicry elements. FusoSecretome proteins share similar features with known bacterial virulence factors thereby highlighting their pathogenic potential. We show that they interact with human proteins that participate in infection-related cellular processes and localize in established cellular districts of the host-pathogen interface. Our network-based analysis identified 31 functional modules in the human interactome preferentially targeted by 138 FusoSecretome proteins, among which we selected 26 as main candidate virulence proteins, representing both putative and known virulence proteins. Finally, six of the preferentially targeted functional modules are implicated in the onset and progression of inflammatory bowel diseases and colorectal cancer. CONCLUSIONS Overall, our computational analysis identified candidate virulence proteins potentially involved in the F. nucleatum-human cross-talk in the context of gastrointestinal diseases.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France.
| | - Lionel Spinelli
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Shérazade Braham
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Christine Brun
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
- CNRS, Marseille, France
| |
Collapse
|
42
|
Brandi J, Manfredi M, Speziali G, Gosetti F, Marengo E, Cecconi D. Proteomic approaches to decipher cancer cell secretome. Semin Cell Dev Biol 2017; 78:93-101. [PMID: 28684183 DOI: 10.1016/j.semcdb.2017.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/17/2023]
Abstract
In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy; ISALIT S.r.l., Novara, Italy.
| | - Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| | - Fabio Gosetti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| |
Collapse
|
43
|
ADAM Metalloprotease-Released Cancer Biomarkers. Trends Cancer 2017; 3:482-490. [DOI: 10.1016/j.trecan.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
44
|
Dick JM. Chemical composition and the potential for proteomic transformation in cancer, hypoxia, and hyperosmotic stress. PeerJ 2017; 5:e3421. [PMID: 28603672 PMCID: PMC5463988 DOI: 10.7717/peerj.3421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
The changes of protein expression that are monitored in proteomic experiments are a type of biological transformation that also involves changes in chemical composition. Accompanying the myriad molecular-level interactions that underlie any proteomic transformation, there is an overall thermodynamic potential that is sensitive to microenvironmental conditions, including local oxidation and hydration potential. Here, up- and down-expressed proteins identified in 71 comparative proteomics studies were analyzed using the average oxidation state of carbon (ZC) and water demand per residue (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O), calculated using elemental abundances and stoichiometric reactions to form proteins from basis species. Experimental lowering of oxygen availability (hypoxia) or water activity (hyperosmotic stress) generally results in decreased ZC or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{n}}_{{\mathrm{H}}_{2}\mathrm{O}}$\end{document}n¯H2O of up-expressed compared to down-expressed proteins. This correspondence of chemical composition with experimental conditions provides evidence for attraction of the proteomes to a low-energy state. An opposite compositional change, toward higher average oxidation or hydration state, is found for proteomic transformations in colorectal and pancreatic cancer, and in two experiments for adipose-derived stem cells. Calculations of chemical affinity were used to estimate the thermodynamic potentials for proteomic transformations as a function of fugacity of O2 and activity of H2O, which serve as scales of oxidation and hydration potential. Diagrams summarizing the relative potential for formation of up- and down-expressed proteins have predicted equipotential lines that cluster around particular values of oxygen fugacity and water activity for similar datasets. The changes in chemical composition of proteomes are likely linked with reactions among other cellular molecules. A redox balance calculation indicates that an increase in the lipid to protein ratio in cancer cells by 20% over hypoxic cells would generate a large enough electron sink for oxidation of the cancer proteomes. The datasets and computer code used here are made available in a new R package, canprot.
Collapse
|
45
|
Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget 2017; 8:64551-64563. [PMID: 28969093 PMCID: PMC5610025 DOI: 10.18632/oncotarget.18350] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5′ or 3′ tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific expression. CircRNAs are generated either from exons or introns by back splicing or lariat introns. CircRNAs play important roles as miRNA sponges, gene transcription and expression regulators, RNA-binding protein (RBP) sponges and protein/peptide translators. Emerging evidence revealed the function of circRNAs in cancer and may potentially serve as a required novel biomarker and therapeutic target for cancer treatment. In this review, we discuss about the origins, characteristics and functions of circRNA and how they work as miRNA sponges, gene transcription and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment.
Collapse
|
46
|
Corbo C, Cevenini A, Salvatore F. Biomarker discovery by proteomics-based approaches for early detection and personalized medicine in colorectal cancer. Proteomics Clin Appl 2017; 11. [PMID: 28019089 DOI: 10.1002/prca.201600072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
About one million people per year develop colorectal cancer (CRC) and approximately half of them die. The extent of the disease (i.e. local invasion at the time of diagnosis) is a key prognostic factor. The 5-year survival rate is almost 90% in the case of delimited CRC and 10% in the case of metastasized CRC. Hence, one of the great challenges in the battle against CRC is to improve early diagnosis strategies. Large-scale proteomic approaches are widely used in cancer research to search for novel biomarkers. Such biomarkers can help in improving the accuracy of the diagnosis and in the optimization of personalized therapy. Herein, we provide an overview of studies published in the last 5 years on CRC that led to the identification of protein biomarkers suitable for clinical application by using proteomic approaches. We discussed these findings according to biomarker application, including also the role of protein phosphorylation and cancer stem cells in biomarker discovery. Our review provides a cross section of scientific approaches and can furnish suggestions for future experimental strategies to be used as reference by scientists, clinicians and researchers interested in proteomics for biomarker discovery.
Collapse
Affiliation(s)
- Claudia Corbo
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Armando Cevenini
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesco Salvatore
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy
| |
Collapse
|
47
|
Uzozie AC, Selevsek N, Wahlander A, Nanni P, Grossmann J, Weber A, Buffoli F, Marra G. Targeted Proteomics for Multiplexed Verification of Markers of Colorectal Tumorigenesis. Mol Cell Proteomics 2017; 16:407-427. [PMID: 28062797 DOI: 10.1074/mcp.m116.062273] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Targeted proteomic methods can accelerate the verification of multiple tumor marker candidates in large series of patient samples. We utilized the targeted approach known as selected/multiple reaction monitoring (S/MRM) to verify potential protein markers of colorectal adenoma identified by our group in previous transcriptomic and quantitative shotgun proteomic studies of a large cohort of precancerous colorectal lesions. We developed SRM assays to reproducibly detect and quantify 25 (62.5%) of the 40 selected proteins in an independent series of precancerous and cancerous tissue samples (19 adenoma/normal mucosa pairs; 17 adenocarcinoma/normal mucosa pairs). Twenty-three proteins were significantly up-regulated (n = 17) or downregulated (n = 6) in adenomas and/or adenocarcinomas, as compared with normal mucosa (linear fold changes ≥ ±1.3, adjusted p value <0.05). Most changes were observed in both tumor types (up-regulation of ANP32A, ANXA3, SORD, LDHA, LCN2, NCL, S100A11, SERPINB5, CDV3, OLFM4, and REG4; downregulation of ARF6 and PGM5), and a five-protein biomarker signature distinguished neoplastic tissue from normal mucosa with a maximum area under the receiver operating curve greater than 0.83. Other changes were specific for adenomas (PPA1 and PPA2 up-regulation; KCTD12 downregulation) or adenocarcinoma (ANP32B, G6PD, RCN1, and SET up-regulation; downregulated AKR1B1, APEX1, and PPA1). Some changes significantly correlated with a few patient- or tumor-related phenotypes. Twenty-two (96%) of the 23 proteins have a potential to be released from the tumors into the bloodstream, and their detectability in plasma has been previously reported. The proteins identified in this study expand the pool of biomarker candidates that can be used to develop a standardized precolonoscopy blood test for the early detection of colorectal tumors.
Collapse
Affiliation(s)
| | - Nathalie Selevsek
- §Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | - Asa Wahlander
- §Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | - Paolo Nanni
- §Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- §Functional Genomics Center Zurich, University/ETH Zurich, Zurich, Switzerland
| | - Achim Weber
- ¶Institute of Surgical Pathology, University of Zurich, Switzerland
| | - Federico Buffoli
- ‖ Gastroenterology and Endoscopy Unit, Hospital of Cremona, Italy
| | - Giancarlo Marra
- From the ‡Institute of Molecular Cancer Research, University of Zurich, Switzerland;
| |
Collapse
|
48
|
Crotti S, Piccoli M, Rizzolio F, Giordano A, Nitti D, Agostini M. Extracellular Matrix and Colorectal Cancer: How Surrounding Microenvironment Affects Cancer Cell Behavior? J Cell Physiol 2016; 232:967-975. [PMID: 27775168 DOI: 10.1002/jcp.25658] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) whit more than a million of new cases per year is one of the most common registered cancers worldwide with few treatment options especially for advanced and metastatic patients.The tumor microenvironment is composed by extracellular matrix (ECM), cells, and interstitial fluids. Among all these constituents, in the last years an increased interest around the ECM and its potential role in cancer tumorigenesis is arisen. During cancer progression the ECM structure and composition became disorganized, allowing cellular transformation and metastasis. Up to now, the focus has mainly been on the characterization of CRC microenvironment analyzing separately structural ECM components or cell secretome modifications. A more extensive view that interconnects these aspects should be addressed. In this review, biochemical (secretome) and biomechanical (structure and architecture) changes of tumor microenvironment will be discussed, giving suggestions on how these changes can affect cancer cell behavior. J. Cell. Physiol. 232: 967-975, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy
| | - Martina Piccoli
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy
| | - Flavio Rizzolio
- Department of Translational Research, IRCCS-National Cancer Institute, Aviano, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Donato Nitti
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Nicolo Giustiniani 2, Padova, Italy
| | - Marco Agostini
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy.,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Nicolo Giustiniani 2, Padova, Italy
| |
Collapse
|
49
|
Pyrazolo[1,5 a ]pyrimidines as a new class of FUSE binding protein 1 (FUBP1) inhibitors. Bioorg Med Chem 2016; 24:5717-5729. [DOI: 10.1016/j.bmc.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/13/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
|
50
|
Huang HC, Yan L, Shao MY, Chen ZC. Advances in proteomic study of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:3870-3876. [DOI: 10.11569/wcjd.v24.i27.3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common malignant tumors and the fourth cause of cancer-related mortality. It is not easy to be found at the early stage and therefore has a poor prognosis. Thus, new molecular biomarkers are required to improve early diagnosis and discover new effective therapeutic targets. Advances in proteomic technologies have greatly enhanced our understanding of the pathogenesis of colorectal cancer at the protein level, and improved our ability of early diagnosis and treatment. Proteomic studies of colorectal tissues, serum and cell lines have identified differentially expressed proteins, new potential diagnostic biomarkers and clinical drug targets. This article reviews the advances in proteomic study of colorectal cancer in recent years.
Collapse
|