2
|
Gobena S, Admassu B, Kinde MZ, Gessese AT. Proteomics and Its Current Application in Biomedical Area: Concise Review. ScientificWorldJournal 2024; 2024:4454744. [PMID: 38404932 PMCID: PMC10894052 DOI: 10.1155/2024/4454744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Biomedical researchers tirelessly seek cutting-edge technologies to advance disease diagnosis, drug discovery, and therapeutic interventions, all aimed at enhancing human and animal well-being. Within this realm, proteomics stands out as a pivotal technology, focusing on extensive studies of protein composition, structure, function, and interactions. Proteomics, with its subdivisions of expression, structural, and functional proteomics, plays a crucial role in unraveling the complexities of biological systems. Various sophisticated techniques are employed in proteomics, including polyacrylamide gel electrophoresis, mass spectrometry analysis, NMR spectroscopy, protein microarray, X-ray crystallography, and Edman sequencing. These methods collectively contribute to the comprehensive understanding of proteins and their roles in health and disease. In the biomedical field, proteomics finds widespread application in cancer research and diagnosis, stem cell studies, and the diagnosis and research of both infectious and noninfectious diseases. In addition, it plays a pivotal role in drug discovery and the emerging frontier of personalized medicine. The versatility of proteomics allows researchers to delve into the intricacies of molecular mechanisms, paving the way for innovative therapeutic approaches. As infectious and noninfectious diseases continue to emerge and the field of biomedical research expands, the significance of proteomics becomes increasingly evident. Keeping abreast of the latest developments in proteomics applications becomes paramount for the development of therapeutics, translational research, and study of diverse diseases. This review aims to provide a comprehensive overview of proteomics, offering a concise outline of its current applications in the biomedical domain. By doing so, it seeks to contribute to the understanding and advancement of proteomics, emphasizing its pivotal role in shaping the future of biomedical research and therapeutic interventions.
Collapse
Affiliation(s)
- Semira Gobena
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Bemrew Admassu
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Tesfaye Gessese
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Rinschen MM, Limbutara K, Knepper MA, Payne DM, Pisitkun T. From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology. Physiol Rev 2019; 98:2571-2606. [PMID: 30182799 DOI: 10.1152/physrev.00057.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Classical physiological studies using electrophysiological, biophysical, biochemical, and molecular techniques have created a detailed picture of molecular transport, bioenergetics, contractility and movement, and growth, as well as the regulation of these processes by external stimuli in cells and organisms. Newer systems biology approaches are beginning to provide deeper and broader understanding of these complex biological processes and their dynamic responses to a variety of environmental cues. In the past decade, advances in mass spectrometry-based proteomic technologies have provided invaluable tools to further elucidate these complex cellular processes, thereby confirming, complementing, and advancing common views of physiology. As one notable example, the application of proteomics to study the regulation of kidney function has yielded novel insights into the chemical and physical processes that tightly control body fluids, electrolytes, and metabolites to provide optimal microenvironments for various cellular and organ functions. Here, we systematically review, summarize, and discuss the most significant key findings from functional proteomic studies in renal epithelial physiology. We also identify further improvements in technological and bioinformatics methods that will be essential to advance precision medicine in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Kavee Limbutara
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Mark A Knepper
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - D Michael Payne
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Trairak Pisitkun
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
10
|
Formolo T, Ly M, Levy M, Kilpatrick L, Lute S, Phinney K, Marzilli L, Brorson K, Boyne M, Davis D, Schiel J. Determination of the NISTmAb Primary Structure. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Trina Formolo
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Mellisa Ly
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michaella Levy
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Lisa Kilpatrick
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Scott Lute
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Karen Phinney
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Lisa Marzilli
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Kurt Brorson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michael Boyne
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Darryl Davis
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - John Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|