1
|
Paredes-Fuentes AJ, Oliva C, Urreizti R, Yubero D, Artuch R. Laboratory testing for mitochondrial diseases: biomarkers for diagnosis and follow-up. Crit Rev Clin Lab Sci 2023; 60:270-289. [PMID: 36694353 DOI: 10.1080/10408363.2023.2166013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The currently available biomarkers generally lack the specificity and sensitivity needed for the diagnosis and follow-up of patients with mitochondrial diseases (MDs). In this group of rare genetic disorders (mutations in approximately 350 genes associated with MDs), all clinical presentations, ages of disease onset and inheritance types are possible. Blood, urine, and cerebrospinal fluid surrogates are well-established biomarkers that are used in clinical practice to assess MD. One of the main challenges is validating specific and sensitive biomarkers for the diagnosis of disease and prediction of disease progression. Profiling of lactate, amino acids, organic acids, and acylcarnitine species is routinely conducted to assess MD patients. New biomarkers, including some proteins and circulating cell-free mitochondrial DNA, with increased diagnostic specificity have been identified in the last decade and have been proposed as potentially useful in the assessment of clinical outcomes. Despite these advances, even these new biomarkers are not sufficiently specific and sensitive to assess MD progression, and new biomarkers that indicate MD progression are urgently needed to monitor the success of novel therapeutic strategies. In this report, we review the mitochondrial biomarkers that are currently analyzed in clinical laboratories, new biomarkers, an overview of the most common laboratory diagnostic techniques, and future directions regarding targeted versus untargeted metabolomic and genomic approaches in the clinical laboratory setting. Brief descriptions of the current methodologies are also provided.
Collapse
Affiliation(s)
- Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Clara Oliva
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Roser Urreizti
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Delia Yubero
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetic and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2023; 2596:399-419. [PMID: 36378453 DOI: 10.1007/978-1-0716-2831-7_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a difference gel electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Croda Europe Limited, Daresbury, Cheshire, UK.
| |
Collapse
|
3
|
Illescas M, Peñas A, Arenas J, Martín MA, Ugalde C. Regulation of Mitochondrial Function by the Actin Cytoskeleton. Front Cell Dev Biol 2022; 9:795838. [PMID: 34993202 PMCID: PMC8725978 DOI: 10.3389/fcell.2021.795838] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
The regulatory role of actin cytoskeleton on mitochondrial function is a growing research field, but the underlying molecular mechanisms remain poorly understood. Specific actin-binding proteins (ABPs), such as Gelsolin, have also been shown to participate in the pathophysiology of mitochondrial OXPHOS disorders through yet to be defined mechanisms. In this mini-review, we will summarize the experimental evidence supporting the fundamental roles of actin cytoskeleton and ABPs on mitochondrial trafficking, dynamics, biogenesis, metabolism and apoptosis, with a particular focus on Gelsolin involvement in mitochondrial disorders. The functional interplay between the actin cytoskeleton, ABPs and mitochondrial membranes for the regulation of cellular homeostasis thus emerges as a new exciting field for future research and therapeutic approaches.
Collapse
Affiliation(s)
- María Illescas
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Ana Peñas
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Joaquín Arenas
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel A Martín
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
4
|
Plasma Gelsolin Reinforces the Diagnostic Value of FGF-21 and GDF-15 for Mitochondrial Disorders. Int J Mol Sci 2021; 22:ijms22126396. [PMID: 34203775 PMCID: PMC8232645 DOI: 10.3390/ijms22126396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial disorders (MD) comprise a group of heterogeneous clinical disorders for which non-invasive diagnosis remains a challenge. Two protein biomarkers have so far emerged for MD detection, FGF-21 and GDF-15, but the identification of additional biomarkers capable of improving their diagnostic accuracy is highly relevant. Previous studies identified Gelsolin as a regulator of cell survival adaptations triggered by mitochondrial defects. Gelsolin presents a circulating plasma isoform (pGSN), whose altered levels could be a hallmark of mitochondrial dysfunction. Therefore, we investigated the diagnostic performance of pGSN for MD relative to FGF-21 and GDF-15. Using ELISA assays, we quantified plasma levels of pGSN, FGF-21, and GDF-15 in three age- and gender-matched adult cohorts: 60 genetically diagnosed MD patients, 56 healthy donors, and 41 patients with unrelated neuromuscular pathologies (non-MD). Clinical variables and biomarkers’ plasma levels were compared between groups. Discrimination ability was calculated using the area under the ROC curve (AUC). Optimal cut-offs and the following diagnostic parameters were determined: sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and efficiency. Comprehensive statistical analyses revealed significant discrimination ability for the three biomarkers to classify between MD and healthy individuals, with the best diagnostic performance for the GDF-15/pGSN combination. pGSN and GDF-15 preferentially discriminated between MD and non-MD patients under 50 years, whereas FGF-21 best classified older subjects. Conclusion: pGSN improves the diagnosis accuracy for MD provided by FGF-21 and GDF-15.
Collapse
|
5
|
Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction. Nat Commun 2021; 12:2103. [PMID: 33833234 PMCID: PMC8032734 DOI: 10.1038/s41467-021-22062-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial diseases impair oxidative phosphorylation and ATP production, while effective treatment is still lacking. Defective complex III is associated with a highly variable clinical spectrum. We show that pyocyanin, a bacterial redox cycler, can replace the redox functions of complex III, acting as an electron shunt. Sub-μM pyocyanin was harmless, restored respiration and increased ATP production in fibroblasts from five patients harboring pathogenic mutations in TTC19, BCS1L or LYRM7, involved in assembly/stabilization of complex III. Pyocyanin normalized the mitochondrial membrane potential, and mildly increased ROS production and biogenesis. These in vitro effects were confirmed in both DrosophilaTTC19KO and in Danio rerioTTC19KD, as administration of low concentrations of pyocyanin significantly ameliorated movement proficiency. Importantly, daily administration of pyocyanin for two months was not toxic in control mice. Our results point to utilization of redox cyclers for therapy of complex III disorders.
Collapse
|
6
|
Zurbrigg K, Bertolini F, Walugembe M, van Dreumel T, Alves D, Friendship R, O'Sullivan TL, Rothschild MF. A genome-wide analysis of cardiac lesions of pigs that die during transport: Is heart failure of in-transit-loss pigs associated with a heritable cardiomyopathy? CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2021; 85:119-126. [PMID: 33883819 PMCID: PMC7995549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
While heart failure is a primary cause of death for many in-transit-loss (ITL) pigs, the underlying cause of these deaths is not known. Cardiomyopathies are considered a common cause of heart failure in humans and often have a genetic component. The objective of this study was to determine if genes associated with cardiomyopathies could be identified in ITL pigs. Samples from the hearts of pigs that died during transport to an abattoir in Ontario, Canada were collected and genotyped along with samples from pigs that did not die during transport (ILT hearts: n = 149; non-ITL/control hearts: n = 387). Genome-wide analyses were carried out on each of the determined phenotypes (gross cardiac lesions) using a medium density single nucleotide polymorphism (SNP) chip and 500 kb windows/regions for analysis, with 250 kb regions of overlap. The distribution derived by a multidimensional scaling (MDS) analysis of all phenotypes demonstrated a lack of complete separation between phenotypes of affected and unaffected animals, which made diagnosis difficult. Although genetic differences were small, a few genes associated with dilated cardiomyopathy (DCM) and arrhythmogenic right ventricular cardiomyopathy (ARVM) were identified. In addition, multiple genes associated with cardiac arrhythmias and ventricular hypertrophy were identified that can possibly result in heart failure. The results of this preliminary study did not provide convincing evidence that a single, heritable cardiomyopathy is the cause of heart failure in ITL pigs.
Collapse
Affiliation(s)
- Katherine Zurbrigg
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Francesca Bertolini
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Muhammed Walugembe
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Toni van Dreumel
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - David Alves
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Robert Friendship
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Terri L O'Sullivan
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| | - Max F Rothschild
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Zurbrigg, Friendship, O'Sullivan); Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA (Bertolini, Walugembe, Rothschild); National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark (Bertolini); Veterinary Pathology Consultant, Ontario (van Dreumel), Veterinary Epidemiology Consultant, Elora, Ontario (Alves)
| |
Collapse
|
7
|
Altered Expression Ratio of Actin-Binding Gelsolin Isoforms Is a Novel Hallmark of Mitochondrial OXPHOS Dysfunction. Cells 2020; 9:cells9091922. [PMID: 32824961 PMCID: PMC7563380 DOI: 10.3390/cells9091922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) defects are the primary cause of inborn errors of energy metabolism. Despite considerable progress on their genetic basis, their global pathophysiological consequences remain undefined. Previous studies reported that OXPHOS dysfunction associated with complex III deficiency exacerbated the expression and mitochondrial location of cytoskeletal gelsolin (GSN) to promote cell survival responses. In humans, besides the cytosolic isoform, GSN presents a plasma isoform secreted to extracellular environments. We analyzed the interplay between both GSN isoforms in human cellular and clinical models of OXPHOS dysfunction. Regardless of its pathogenic origin, OXPHOS dysfunction induced the physiological upregulation of cytosolic GSN in the mitochondria (mGSN), in parallel with a significant downregulation of plasma GSN (pGSN) levels. Consequently, significantly high mGSN-to-pGSN ratios were associated with OXPHOS deficiency both in human cells and blood. In contrast, control cells subjected to hydrogen peroxide or staurosporine treatments showed no correlation between oxidative stress or cell death induction and the altered levels and subcellular location of GSN isoforms, suggesting their specificity for OXPHOS dysfunction. In conclusion, a high mitochondrial-to-plasma GSN ratio represents a useful cellular indicator of OXPHOS defects, with potential use for future research of a wide range of clinical conditions with mitochondrial involvement.
Collapse
|
8
|
Zweers HEE, Janssen MCH, Wanten GJA. Optimal Estimate for Energy Requirements in Adult Patients With the m.3243A>G Mutation in Mitochondrial DNA. JPEN J Parenter Enteral Nutr 2020; 45:158-164. [PMID: 32696575 PMCID: PMC7891583 DOI: 10.1002/jpen.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 01/17/2023]
Abstract
Aim We aimed to identify the optimal method to estimate total energy expenditure (TEE) in mitochondrial disease (MD) patients. Methods Resting energy expenditure (REE) was measured in MD patients carrying the m3243A>G mutation using indirect calorimetry (IC) and compared with results of 21 predictive equations (PEs) for REE and with REE‐IC measurements in healthy controls. Physical activity level (PAL) was measured using accelerometery (SenseWear) and compared with a fixed average PAL (1.4) as well as patients’ self‐estimated activity levels. TEE was calculated as REE‐IC × PAL SenseWear and compared with usual care and energy recommendations for healthy adults. Results Thirty‐eight MD patients (age: 48 ± 13 years; body mass index 24 ± 4 kg/m2; male 20%) and 25 matched controls were included. The accuracy of most PEs was between 63% and 76%. The difference in REE‐IC in healthy controls (1532 ± 182 kcal) and MD patients (1430 ± 221) was borderline not significant (P = .052). Patients’ estimations PAL were 18%–34% accurate at the individual level. The fixed activity factor was 53% accurate. Patients overestimated their PAL. Usual care predicted TEE accurately in only 32% of patients. Conclusion TEE is lower in these MD patients than the recommendations for healthy adults because of their lower physical activity. In MD patients, 6 PEs for REE provide a reliable alternative for IC, with an accuracy of 71%–76%. As PAL is highly variable and not reliably estimated by patients, measurement of PAL using accelerometery is recommended in this population.
Collapse
Affiliation(s)
- Heidi E E Zweers
- Radboud Center for Mitochondrial Medicine, Nijmegen, the Netherlands.,Department of Gastroenterology and Hepatology-Dietetics, Radboudumc, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud Center for Mitochondrial Medicine, Nijmegen, the Netherlands.,Department of Internal Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Geert J A Wanten
- Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Novel Homozygous Variant in TTC19 Causing Mitochondrial Complex III Deficiency with Recurrent Stroke-Like Episodes: Expanding the Phenotype. Semin Pediatr Neurol 2018; 26:16-20. [PMID: 29961508 DOI: 10.1016/j.spen.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 7-year-old boy with family history of consanguinity presented with developmental delay and recurrent hemiplegia involving both sides of the body, with variable facial and ocular involvement. Brain MRI showed bilateral striatal necrosis with cystic degeneration and lactate peaks on spectroscopy. Biochemical testing demonstrated mildly elevated lactate and pyruvate. Whole-exome sequencing revealed a novel homozygous pathogenic frameshift mutation in gene TTC19, diagnostic of mitochondrial complex III deficiency.
Collapse
|
10
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2018; 1664:261-278. [PMID: 29019139 DOI: 10.1007/978-1-4939-7268-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a Difference Gel Electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Monaghan Biosciences, Tyholland, Co. Monaghan, Ireland.
| |
Collapse
|
11
|
García-Bartolomé A, Peñas A, Marín-Buera L, Lobo-Jarne T, Pérez-Pérez R, Morán M, Arenas J, Martín MA, Ugalde C. Respiratory chain enzyme deficiency induces mitochondrial location of actin-binding gelsolin to modulate the oligomerization of VDAC complexes and cell survival. Hum Mol Genet 2017; 26:2493-2506. [PMID: 28431142 DOI: 10.1093/hmg/ddx144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/11/2017] [Indexed: 11/14/2022] Open
Abstract
Despite considerable knowledge on the genetic basis of mitochondrial disorders, their pathophysiological consequences remain poorly understood. We previously used two-dimensional difference gel electrophoresis analyses to define a protein profile characteristic for respiratory chain complex III-deficiency that included a significant overexpression of cytosolic gelsolin (GSN), a cytoskeletal protein that regulates the severing and capping of the actin filaments. Biochemical and immunofluorescence assays confirmed a specific increase of GSN levels in the mitochondria from patients' fibroblasts and from transmitochondrial cybrids with complex III assembly defects. A similar effect was obtained in control cells upon treatment with antimycin A in a dose-dependent manner, showing that the enzymatic inhibition of complex III is sufficient to promote the mitochondrial localization of GSN. Mitochondrial subfractionation showed the localization of GSN to the mitochondrial outer membrane, where it interacts with the voltage-dependent anion channel protein 1 (VDAC1). In control cells, VDAC1 was present in five stable oligomeric complexes, which showed increased levels and a modified distribution pattern in the complex III-deficient cybrids. Downregulation of GSN expression induced cell death in both cell types, in parallel with the specific accumulation of VDAC1 dimers and the release of mitochondrial cytochrome c into the cytosol, indicating a role for GSN in the oligomerization of VDAC complexes and in the prevention of apoptosis. Our results demonstrate that respiratory chain complex III dysfunction induces the physiological upregulation and mitochondrial location of GSN, probably to promote cell survival responses through the modulation of the oligomeric state of the VDAC complexes.
Collapse
Affiliation(s)
- Alberto García-Bartolomé
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Ana Peñas
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
| | - Lorena Marín-Buera
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Teresa Lobo-Jarne
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Rafael Pérez-Pérez
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - María Morán
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Joaquín Arenas
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Miguel A Martín
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| | - Cristina Ugalde
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid U723, Spain
| |
Collapse
|
12
|
Caspase-2 deficiency enhances whole-body carbohydrate utilisation and prevents high-fat diet-induced obesity. Cell Death Dis 2017; 8:e3136. [PMID: 29072701 PMCID: PMC5682682 DOI: 10.1038/cddis.2017.518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Abstract
Caspase-2 has been shown to be involved in metabolic homeostasis. Here, we show that caspase-2 deficiency alters basal energy metabolism by shifting the balance in fuel choice from fatty acid to carbohydrate usage. At 4 weeks of age, whole-body carbohydrate utilisation was increased in Casp2-/- mice and was maintained into adulthood. By 17 weeks of age, Casp2-/- mice had reduced white adipose mass, smaller white adipocytes decreased fasting blood glucose and plasma triglycerides but maintained normal insulin levels. When placed on a 12-week high-fat diet (HFD), Casp2-/- mice resisted the development of obesity, fatty liver, hyperinsulinemia and insulin resistance. In addition, HFD-fed Casp2-/- mice had reduced white adipocyte hypertrophy, apoptosis and expansion of both subcutaneous and visceral adipose depots. Increased expression of UCP1 and the maintenance of adiponectin levels in white adipose tissue of HFD-fed Casp2-/- mice indicated increased browning and adipocyte hyperplasia. We found that while the preference for whole-body carbohydrate utilisation was maintained, HFD-fed Casp2-/- mice were not impaired in their ability to switch to utilising fats as a fuel source. Our findings suggest that caspase-2 impacts basal energy metabolism by regulating adipocyte biology and fat expansion, most likely via a non-apoptotic function. Furthermore, we show that caspase-2 deficiency shifts the balance in fuel choice towards increased carbohydrate utilisation and propose that this is due to mild energy stress. As a consequence, Casp2-/- mice show an adaptive remodelling of adipose tissue that protects from HFD-induced obesity and improves glucose homeostasis while paradoxically increasing their susceptibility to oxidative stress induced damage and premature ageing.
Collapse
|
13
|
Salvador-Severo K, Gómez-Caudillo L, Quezada H, García-Trejo JDJ, Cárdenas-Conejo A, Vázquez-Memije ME, Minauro-Sanmiguel F. Mitochondrial proteomic profile of complex IV deficiency fibroblasts: rearrangement of oxidative phosphorylation complex/supercomplex and other metabolic pathways. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:175-180. [DOI: 10.1016/j.bmhimx.2017.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/03/2017] [Accepted: 03/27/2017] [Indexed: 01/10/2023] Open
|
14
|
Głombik K, Stachowicz A, Olszanecki R, Ślusarczyk J, Trojan E, Lasoń W, Kubera M, Budziszewska B, Spedding M, Basta-Kaim A. The effect of chronic tianeptine administration on the brain mitochondria: direct links with an animal model of depression. Mol Neurobiol 2016; 53:7351-7362. [PMID: 26934888 PMCID: PMC5104776 DOI: 10.1007/s12035-016-9807-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022]
Abstract
A growing body of evidence has focused on the impact of mitochondrial disturbances in the development of depression, but little data exist regarding the effects of chronic administration of antidepressant drugs on the brain's mitochondrial protein profile. The aim of this study was to investigate the impact of chronic treatment with an atypical antidepressant drug-tianeptine-on the mitochondria-enriched subproteome profile in the hippocampus and the frontal cortex of 3-month-old male rats following a prenatal stress procedure. Rats that were exposed to a prenatal stress procedure displayed depressive- and anxiety-like disturbances based on the elevated plus-maze and Porsolt tests. Moreover, two-dimensional electrophoresis coupled with mass spectrometry showed structure-dependent mitoproteome changes in brains of prenatally stressed rats after chronic tianeptine administration. A component of 2-oxoglutarate and succinate flavoprotein subunit dehydrogenases, isocitrate subunit alpha, was upregulated in the hippocampus. In the frontal cortex, there was a striking increase in the expression of glutamate dehydrogenase and cytochrome bc1 complex subunit 2. These findings suggest that mitochondria are underappreciated targets for therapeutic interventions, and mitochondrial function may be crucial for the effective treatment of stress-related diseases.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531, Kraków, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531, Kraków, Poland
| | - Joanna Ślusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Bogusława Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland
| | - Michael Spedding
- Physiopathogie des Maladies Psychiatriques, INSERM UMR_S 894, Centre de Psychiatrie et Neurosciences, 2ter rue d'Alesia, 75014, Paris, France
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
| |
Collapse
|
15
|
Fiuza-Luces C, Santos-Lozano A, García-Silva M, Martín-Hernández E, Quijada-Fraile P, Marín-Peiró M, Campos P, Arenas J, Lucía A, Martín M, Morán M. Assessment of resting energy expenditure in pediatric mitochondrial diseases with indirect calorimetry. Clin Nutr 2016; 35:1484-1489. [DOI: 10.1016/j.clnu.2016.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/15/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
|
16
|
Peiris-Pagès M, Smith DL, Győrffy B, Sotgia F, Lisanti MP. Proteomic identification of prognostic tumour biomarkers, using chemotherapy-induced cancer-associated fibroblasts. Aging (Albany NY) 2016; 7:816-38. [PMID: 26539730 PMCID: PMC4637208 DOI: 10.18632/aging.100808] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer cells grow in highly complex stromal microenvironments, which through metabolic remodelling, catabolism, autophagy and inflammation nurture them and are able to facilitate metastasis and resistance to therapy. However, these changes in the metabolic profile of stromal cancer-associated fibroblasts and their impact on cancer initiation, progression and metastasis are not well-known. This is the first study to provide a comprehensive proteomic portrait of the azathioprine and taxol-induced catabolic state on human stromal fibroblasts, which comprises changes in the expression of metabolic enzymes, myofibroblastic differentiation markers, antioxidants, proteins involved in autophagy, senescence, vesicle trafficking and protein degradation, and inducers of inflammation. Interestingly, many of these features are major contributors to the aging process. A catabolic stroma signature, generated with proteins found differentially up-regulated in taxol-treated fibroblasts, strikingly correlates with recurrence, metastasis and poor patient survival in several solid malignancies. We therefore suggest the inhibition of the catabolic state in healthy cells as a novel approach to improve current chemotherapy efficacies and possibly avoid future carcinogenic processes.
Collapse
Affiliation(s)
- Maria Peiris-Pagès
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Duncan L Smith
- The Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Federica Sotgia
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| |
Collapse
|
17
|
Guo H, Wan H, Chen H, Fang F, Liu S, Zhou J. Proteomic analysis of the response of α-ketoglutarate-producer Yarrowia lipolytica WSH-Z06 to environmental pH stimuli. Appl Microbiol Biotechnol 2016; 100:8829-41. [PMID: 27535241 DOI: 10.1007/s00253-016-7775-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022]
Abstract
During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biological Chemical Engineering, Huaqiao University, 668 Jimei Road, Amoy, Fujian, 361021, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Hui Wan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Hongwen Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biological Chemical Engineering, Huaqiao University, 668 Jimei Road, Amoy, Fujian, 361021, China
| | - Fang Fang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
18
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Cortés A, Sotillo J, Muñoz-Antolí C, Martín-Grau C, Esteban JG, Toledo R. Resistance against Echinostoma caproni (Trematoda) secondary infections in mice is not dependent on the ileal protein production. J Proteomics 2016; 140:37-47. [PMID: 27040117 DOI: 10.1016/j.jprot.2016.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, which has been widely employed to investigate the factors determining the rejection of intestinal helminths. Protein production patterns of intestinal epithelial cells are related to the infection-induced changes that determine the course of E. caproni infections. Herein, we compare the protein production profiles in the ileum of four experimental groups of mice: control; infected; dewormed and reinfected. Worm burdens were significantly lower in secondary infections, confirming the generation of partial resistance to homologous secondary infections in mice. However, quantitative comparison by 2D-DIGE showed that the protein production profile is similar in control and dewormed mice, and after primary and secondary E. caproni infections. These results showed that, unexpectedly, protein production changes in E. caproni infections are not responsible of resistance development. Fifty-one protein spots were differentially produced between control/treated and infected/reinfected mice and 37 of them were identified by mass spectrometry. The analysis of differentially abundant proteins indicate that cell metabolism and the regulation of proliferation and cell death are the most affected processes after primary and secondary E. caproni infections. These results provide new insights into the proteins involved in the regulation of tissue homeostasis after intestinal infection. SIGNIFICANCE Intestinal helminthiases are highly prevalent parasitic infections with about 1 billion people infected worldwide. In this scenario, better understanding of host-parasite relationships is needed to elucidate the factors that determine intestinal helminth rejection. The intestinal trematode Echinostoma caproni has been broadly employed in this field, with resistance against secondary homologous infections reported in mice. In this paper, new insights are provided in the regulation of tissue homeostasis after intestinal infection. The unexpected lack of an altered pattern of ileal protein production associated to resistance development suggests that this resistance depends on rapid changes, affecting the early establishment of worms, rather than the activation of later effector mechanisms. These results may contribute to the development of new control tools for the management of these parasitic infections.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Carla Martín-Grau
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|