1
|
Bioconversion of Lignocellulosic Biomass into Value Added Products under Anaerobic Conditions: Insight into Proteomic Studies. Int J Mol Sci 2021; 22:ijms222212249. [PMID: 34830131 PMCID: PMC8624197 DOI: 10.3390/ijms222212249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
Production of biofuels and other value-added products from lignocellulose breakdown requires the coordinated metabolic activity of varied microorganisms. The increasing global demand for biofuels encourages the development and optimization of production strategies. Optimization in turn requires a thorough understanding of the microbial mechanisms and metabolic pathways behind the formation of each product of interest. Hydrolysis of lignocellulosic biomass is a bottleneck in its industrial use and often affects yield efficiency. The accessibility of the biomass to the microorganisms is the key to the release of sugars that are then taken up as substrates and subsequently transformed into the desired products. While the effects of different metabolic intermediates in the overall production of biofuel and other relevant products have been studied, the role of proteins and their activity under anaerobic conditions has not been widely explored. Shifts in enzyme production may inform the state of the microorganisms involved; thus, acquiring insights into the protein production and enzyme activity could be an effective resource to optimize production strategies. The application of proteomic analysis is currently a promising strategy in this area. This review deals on the aspects of enzymes and proteomics of bioprocesses of biofuels production using lignocellulosic biomass as substrate.
Collapse
|
2
|
Usai G, Cirrincione S, Re A, Manfredi M, Pagnani A, Pessione E, Mazzoli R. Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach. J Proteomics 2020; 216:103667. [DOI: 10.1016/j.jprot.2020.103667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/31/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
|
3
|
Zhivin-Nissan O, Dassa B, Morag E, Kupervaser M, Levin Y, Bayer EA. Unraveling essential cellulosomal components of the ( Pseudo) Bacteroides cellulosolvens reveals an extensive reservoir of novel catalytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:115. [PMID: 31086567 PMCID: PMC6507058 DOI: 10.1186/s13068-019-1447-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/20/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo)Bacteroides cellulosolvens is a cellulolytic bacterium that produces the most extensive and intricate cellulosomal system known in nature. Recently, the elaborate architecture of the B. cellulosolvens cellulosomal system was revealed from analysis of its genome sequence, and the first evidence regarding the interactions between its structural and enzymatic components were detected in vitro. Yet, the understanding of the cellulolytic potential of the bacterium in carbohydrate deconstruction is inextricably linked to its high-molecular-weight protein complexes, which are secreted from the bacterium. RESULTS The current proteome-wide work reveals patterns of protein expression of the various cellulosomal components, and explores the signature of differential expression upon growth of the bacterium on two major carbon sources-cellobiose and microcrystalline cellulose. Mass spectrometry analysis of the bacterial secretome revealed the expression of 24 scaffoldin structural units and 166 dockerin-bearing components (mainly enzymes), in addition to free enzymatic subunits. The dockerin-bearing components comprise cell-free and cell-bound cellulosomes for more efficient carbohydrate degradation. Various glycoside hydrolase (GH) family members were represented among 102 carbohydrate-degrading enzymes, including the omnipresent, most abundant GH48 exoglucanase. Specific cellulosomal components were found in different molecular-weight fractions associated with cell growth on different carbon sources. Overall, microcrystalline cellulose-derived cellulosomes showed markedly higher expression levels of the structural and enzymatic components, and exhibited the highest degradation activity on five different cellulosic and/or hemicellulosic carbohydrates. The cellulosomal activity of B. cellulosolvens showed high degradation rates that are very promising in biotechnological terms and were compatible with the activity levels exhibited by Clostridium thermocellum purified cellulosomes. CONCLUSIONS The current research demonstrates the involvement of key cellulosomal factors that participate in the mechanism of carbohydrate degradation by B. cellulosolvens. The powerful ability of the bacterium to exhibit different degradation strategies on various carbon sources was revealed. The novel reservoir of cellulolytic components of the cellulosomal degradation machineries may serve as a pool for designing new cellulolytic cocktails for biotechnological purposes.
Collapse
Affiliation(s)
- Olga Zhivin-Nissan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Guo H, Wang XD, Lee DJ. Proteomic researches for lignocellulose-degrading enzymes: A mini-review. BIORESOURCE TECHNOLOGY 2018; 265:532-541. [PMID: 29884341 DOI: 10.1016/j.biortech.2018.05.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 05/14/2023]
Abstract
Protective action of lignin/hemicellulose networks and crystalline structures of embedded cellulose render lignocellulose material resistant to external enzymatic attack. To eliminate this bottleneck, research has been conducted in which advanced proteomic techniques are applied to identify effective commercial hydrolytic enzymes. This mini-review summarizes researches on lignocellulose-degrading enzymes, the mechanisms of the responses of various lignocellulose-degrading strains and microbial communities to various carbon sources and various biomass substrates, post-translational modifications of lignocellulose-degrading enzymes, new lignocellulose-degrading strains, new lignocellulose-degrading enzymes and a new method of secretome analysis. The challenges in the practical use of enzymatic hydrolysis process to realize lignocellulose biorefineries are discussed, along with the prospects for the same.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China; School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
5
|
Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 2017; 15:83-95. [PMID: 27941816 DOI: 10.1038/nrmicro.2016.164] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Sharma PK, Fu J, Spicer V, Krokhin OV, Cicek N, Sparling R, Levin DB. Global changes in the proteome of Cupriavidus necator H16 during poly-(3-hydroxybutyrate) synthesis from various biodiesel by-product substrates. AMB Express 2016; 6:36. [PMID: 27184362 PMCID: PMC4870535 DOI: 10.1186/s13568-016-0206-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 01/13/2023] Open
Abstract
Synthesis of poly-[3-hydroxybutyrate] (PHB) by Cupriavidus necator H16 in batch cultures was evaluated using three biodiesel-derived by-products as the sole carbon sources: waste glycerol (REG-80, refined to 80 % purity with negligible free fatty acids); glycerol bottom (REG-GB, with up to 65 % glycerol and 35 % free fatty acids), and free fatty acids (REG-FFA, with up to 75 % FFA and no glycerol). All the three substrates supported growth and PHB production by C. necator, with polymer accumulation ranging from 9 to 84 % cell dry weight (cdw), depending on the carbon source. To help understand these differences, proteomic analysis indicated that although C. necator H16 was able to accumulate PHB during growth on all three biodiesel by-products, no changes in the levels of PHB synthesis enzymes were observed. However, significant changes in the levels of expression were observed for two Phasin proteins involved with PHB accumulation, and for a number of gene products in the fatty acid β-oxidation pathway, the Glyoxylate Shunt, and the hydrogen (H2) synthesis pathways in C. necator cells cultured with different substrates. The glycerol transport protein (GlpF) was induced in REG-GB and REG-80 glycerol cultures only. Cupriavidus necator cells cultured with REG-GB and REG-FFA showed up-regulation of β-oxidation and Glyoxylate Shunt pathways proteins at 24 h pi, but H2 synthesis pathways enzymes were significantly down-regulated, compared with cells cultured with waste glycerol. Our data confirmed earlier observations of constitutive expression of PHB synthesis proteins, but further suggested that C. necator H16 cells growing on biodiesel-derived glycerol were under oxidative stress.
Collapse
|
7
|
Munir RI, Spicer V, Krokhin OV, Shamshurin D, Zhang X, Taillefer M, Blunt W, Cicek N, Sparling R, Levin DB. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose. BMC Microbiol 2016; 16:91. [PMID: 27215540 PMCID: PMC4877739 DOI: 10.1186/s12866-016-0711-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 05/16/2016] [Indexed: 01/15/2023] Open
Abstract
Background Clostridium termitidis CT1112 is an anaerobic, Gram-positive, mesophilic, spore-forming, cellulolytic bacterium, originally isolated from the gut of a wood feeding termite Nasusitermes lujae. It has the ability to hydrolyze both cellulose and hemicellulose, and ferment the degradation products to acetate, formate, ethanol, lactate, H2, and CO2. It is therefore ges in gene and gene product expression during growth of C. termitidis on cellobiose, xylose, xylan, and α–cellulose. Results Correlation of transcriptome and proteome data with growth and fermentation profiles identified putative carbon-catabolism pathways in C. termitidis. The majority of the proteins associated with central metabolism were detected in high abundance. While major differences were not observed in gene and gene-product expression for enzymes associated with metabolic pathways under the different substrate conditions, xylulokinase and xylose isomerase of the pentose phosphate pathway were found to be highly up-regulated on five carbon sugars compared to hexoses. In addition, genes and gene-products associated with a variety of cellulosome and non-cellulosome associated CAZymes were found to be differentially expressed. Specifically, genes for cellulosomal enzymes and components were highly expressed on α–cellulose, while xylanases and glucosidases were up-regulated on 5 carbon sugars with respect to cellobiose. Chitinase and cellobiophosphorylases were the predominant CAZymes expressed on cellobiose. In addition to growth on xylan, the simultaneous consumption of two important lignocellulose constituents, cellobiose and xylose was also demonstrated. Conclusion There are little changes in core-metabolic pathways under the different carbon sources compared. The most significant differences were found to be associated with the CAZymes, as well as specific up regulation of some key components of the pentose phosphate pathway in the presence of xylose and xylan. This study has enhanced our understanding of the physiology and metabolism of C. termitidis, and provides a foundation for future studies on metabolic engineering to optimize biofuel production from natural biomass. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0711-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riffat I Munir
- Department of Biosystems Engineering, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - Victor Spicer
- Department of Physics and Astronomy, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada.,Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - Dmitry Shamshurin
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - XiangLi Zhang
- Department of Plant Science, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - Marcel Taillefer
- Department of Microbiology, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - Warren Blunt
- Department of Biosystems Engineering, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, R3T 5N6, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Lal S, Levin DB. Comparative Genomics of Core Metabolism Genes of Cellulolytic and Non-cellulolytic Clostridium Species. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:79-112. [PMID: 26907553 DOI: 10.1007/10_2015_5007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microbial production of fuels such as ethanol, butanol, hydrogen (H2), and methane (CH4) from waste biomass has the potential to provide sustainable energy systems that can displace fossil fuel consumption. Screening for microbial diversity and genome sequencing of a wide-range of microorganisms can identify organisms with natural abilities to synthesize these alternative fuels and/or other biotechnological applications. Clostridium species are the most widely studied strict anaerobes capable of fermentative synthesis of ethanol, butanol, or hydrogen directly from waste biomass. Clostridium termitidis CT1112 is a mesophilic, cellulolytic species capable of direct cellulose fermentation to ethanol and organic acids, with concomitant synthesis of H2 and CO2. On the basis of 16S ribosomal RNA (rRNA) and chaperonin 60 (cpn60) gene sequence data, phylogenetic analyses revealed a close relationship between C. termitidis and C. cellobioparum. Comparative bioinformatic analyses of the C. termitidis genome with 18 cellulolytic and 10 non-cellulolytic Clostridium species confirmed this relationship, and further revealed that the majority of core metabolic pathway genes in C. termitidis and C. cellobioparum share more than 90% amino acid sequence identity. The gene loci and corresponding amino acid sequences of the encoded enzymes for each pathway were correlated by percentage identity, higher score (better alignment), and lowest e-value (most significant "hit"). In addition, the function of each enzyme was proposed by conserved domain analysis. In this chapter we discuss the comparative analysis of metabolic pathways involved in synthesis of various useful products by cellulolytic and non-cellulolytic biofuel and solvent producing Clostridium species. This study has generated valuable information concerning the core metabolism genes and pathways of C. termitidis CT1112, which is helpful in developing metabolic engineering strategies to enhance its natural capacity for better industrial applications.
Collapse
Affiliation(s)
- Sadhana Lal
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada, R3T 5V6
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada, R3T 5V6.
| |
Collapse
|
9
|
Munir R, Levin DB. Enzyme Systems of Anaerobes for Biomass Conversion. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:113-138. [PMID: 26907548 DOI: 10.1007/10_2015_5002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biofuels from abundantly available cellulosic biomass are an attractive alternative to current petroleum-based fuels (fossil fuels). Although several strategies exist for commercial production of biofuels, conversion of biomass to biofuels via consolidated bioprocessing offers the potential to reduce production costs and increase processing efficiencies. In consolidated bioprocessing (CBP), enzyme production, cellulose hydrolysis, and fermentation are all carried out in a single-step by microorganisms that efficiently employ a multitude of intricate enzymes which act synergistically to breakdown cellulose and its associated cell wall components. Various strategies employed by anaerobic cellulolytic bacteria for biomass hydrolysis are described in this chapter. In addition, the regulation of CAZymes, the role of "omics" technologies in assessing lignocellulolytic ability, and current strategies for improving biomass hydrolysis for optimum biofuel production are highlighted.
Collapse
Affiliation(s)
- Riffat Munir
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada, R3T 5V6
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada, R3T 5V6.
| |
Collapse
|