1
|
Song J, Liu S, Ren Y, Zhang X, Zhao B, Wang X, Li Y. Organotin Benzohydroxamate Derivatives (OTBH) Target Colchicine-binding Site Exerting Potent Antitumor Activity both in Vitro and Vivo Revealed by Quantitative Proteomic Analysis. Eur J Pharm Sci 2023:106488. [PMID: 37302769 DOI: 10.1016/j.ejps.2023.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
The activity of four typical organotin benzohydroxamate compounds (OTBH) with the different electronegativity of fluorine and chlorine atoms was assessed both in vitro and in vivo, revealing that they all exhibited notable antitumor effects. Furthermore, it was discovered that the biochemical capacity against cancer was influenced by their substituents' electronegativity and structural symmetry. For instance, benzohydroxamate derivatives with single chlorine at the fourth site on the benzene ring, two normal-butyl organic ligands, a symmetrical structure, and so on ([n-Bu2Sn[{4-ClC6H4C(O)NHO}2] (OTBH-1)) had stronger antitumor activity than others. Furthermore, the quantitative proteomic analysis discovered 203 proteins in HepG2 cells and 146 proteins in rat liver tissues that were differently identified before and after administration. Simultaneously, bioinformatics analysis of differentially expressed proteins demonstrated that the antiproliferative effects involved in the microtubule-based process, tight junction and its downstream apoptosis pathways. As predicted analytically, molecular docking indicated that ''-O-'' were the target docking atoms for the colchicine-binding site; meanwhile, this site was additionally verified by the EBI competition experiment and the microtubule assembly inhibition test. In conclusion, these derivatives promising for developing microtubule-targeting agents (MTAs) were shown to target the colchicine-binding site, impair cancer cell microtubule networks, and then halt mitosis and trigger apoptosis.
Collapse
Affiliation(s)
- Jiayu Song
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Shuran Liu
- Department of Automation, Tsinghua University, Beijing, 100000, 030001, P.R.China
| | - Yuan Ren
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Xiaohui Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Baojin Zhao
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Xinxu Wang
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China
| | - Yunlan Li
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, P.R.China; School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, P.R.China.
| |
Collapse
|
2
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
3
|
Gomez Rodriguez Y, Oliva Arguelles B, Riera-Romo M, Fernandez-De-Cossio J, Garay HE, Fernandez Masso J, Guerra Vallespi M. Synergic effect of anticancer peptide CIGB-552 and Cisplatin in lung cancer models. Mol Biol Rep 2022; 49:3197-3212. [DOI: 10.1007/s11033-022-07152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
|
4
|
Savioli M, Antonelli L, Bocchinfuso G, Cavalieri F, Cimino R, Gatto E, Placidi E, Fernandez Masso JR, Garay Perez H, Santana H, Guerra-Vallespi M, Venanzi M. Formulation matters! A spectroscopic and molecular dynamics investigation on the peptide CIGB552 as itself and in its therapeutical formulation. J Pept Sci 2021; 28:e3356. [PMID: 34114297 DOI: 10.1002/psc.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022]
Abstract
Synthetic therapeutic peptides (STP) are intensively studied as new-generation drugs, characterized by high purity, biocompatibility, selectivity and stereochemical control. However, most of the studies are focussed on the bioactivity of STP without considering how the formulation actually used for therapy administration could alter the physico-chemical properties of the active principle. The aggregation properties of a 20-mer STP (Ac-His-Ala-Arg-Ile-Lys-D-Pro-Thr-Phe-Arg-Arg-D-Leu-Lys-Trp-Lys-Tyr-Lys-Gly-Lys-Phe-Trp-NH2 ), showing antitumor activity, were investigated by optical spectroscopy and atomic force microscopy imaging, as itself (CIGB552) and in its therapeutic formulation (CIGB552TF). It has found that the therapeutic formulation deeply affects the aggregation properties of the investigated peptide and the morphology of the aggregates formed on mica by deposition of CIGB552 and CIGB552TF millimolar solutions. Molecular dynamics simulations studied the first steps of CIGB552 aggregation under physiological ionic strength conditions (NaCl 150 mM), showing that peptide oligomers, from dimers to tetramers, are preferentially formed in this environment. Interestingly, cell viability assays performed on H-460 cell lines indicate a major antiproliferative activity of the peptide in its therapeutic formulation with respect to the peptide aqueous solution.
Collapse
Affiliation(s)
- Marco Savioli
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Antonelli
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Bocchinfuso
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Cavalieri
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy.,School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Rita Cimino
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Gatto
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Ernesto Placidi
- Department of Physics, University of Rome 'Sapienza', Rome, Italy
| | | | | | - Hector Santana
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Mariano Venanzi
- PEPSA-LAB, Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Vallespi MG, Mestre B, Marrero MA, Uranga R, Rey D, Lugiollo M, Betancourt M, Silva K, Corrales D, Lamadrid Y, Rodriguez Y, Maceo A, Chaviano PP, Lemos G, Cabrales A, Freyre FM, Santana H, Garay HE, Oliva B, Fernandez JR. A first-in-class, first-in-human, phase I trial of CIGB-552, a synthetic peptide targeting COMMD1 to inhibit the oncogenic activity of NF-κB in patients with advanced solid tumors. Int J Cancer 2021; 149:1313-1321. [PMID: 34019700 DOI: 10.1002/ijc.33695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
CIGB-552 is a synthetic peptide that interacts with COMMD1 and upregulates its protein levels. The objectives of this phase I study were safety, pharmacokinetic profile, evaluation of the lymphocytes CD4+ and CD8+ and preliminary activity in patients with advanced tumors. A 3 + 3 dose-escalation design with seven dose levels was implemented. Patients were included until a grade 3 related adverse event occurred and the maximum tolerated dose was reached. The patients received subcutaneous administration of CIGB-552 three times per week for 2 weeks. Single-dose plasma pharmacokinetics was characterized at two dose levels, and tumor responses were classified by RECIST 1.1. Twenty-four patients received CIGB-552. Dose-limiting toxicity was associated with a transient grade 3 pruritic maculopapular rash at a dose of 7.0 mg. The maximum tolerated dose was defined as 4.7 mg. Ten patients were assessable for immunological status. Seven patients had significant changes in the ratio CD4/CD8 in response to CIGB-552 treatment; three patients did not modify the immunological status. Stable disease was observed in five patients, including two metastatic soft sarcomas. We conclude that CIGB-552 at dose 4.7 mg was well tolerated with no significant adverse events and appeared to provide some clinical benefits.
Collapse
Affiliation(s)
| | - Braulio Mestre
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Maria A Marrero
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Rolando Uranga
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Diana Rey
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Martha Lugiollo
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Mircea Betancourt
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Kirenia Silva
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Danay Corrales
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Yanet Lamadrid
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Yamilka Rodriguez
- National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Anaelys Maceo
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Pedro P Chaviano
- National Coordinating Center for Clinical Trials (CENCEC), Havana, Cuba
| | - Gilda Lemos
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Freya M Freyre
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Hector Santana
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Hilda E Garay
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Brizaida Oliva
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Julio R Fernandez
- Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
6
|
The Anticancer Peptide CIGB-552 Exerts Anti-Inflammatory and Anti-Angiogenic Effects through COMMD1. Molecules 2020; 26:molecules26010152. [PMID: 33396282 PMCID: PMC7795859 DOI: 10.3390/molecules26010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
CIGB-552 is a synthetic anti-tumor peptide capable of reducing tumor size and increasing the lifespan of tumor-bearing mice. Part of its anti-cancer effects consists of inducing apoptosis, modulating NF-kB signaling pathway, and the angiogenesis process. Although one of its major mediators, the COMMD1 protein, has been identified, the mechanism by which CIGB-552 exerts such effects remains elusive. In the present study, we show the role of COMMD1 in CIGB-552 mechanism of action by generating the COMMD1 knock-out from the human lung cancer cell line NCI-H460. A microarray was performed to analyze both wild-type and KO cell lines with regard to CIGB-552 treatment. Additionally, different signaling pathways were studied in both cell lines to validate the results. Furthermore, the interaction between CIGB-552 and COMMD1 was analyzed by confocal microscopy. By signaling pathway analysis we found that genes involved in cell proliferation and apoptosis, oncogenic transformation, angiogenesis and inflammatory response are potentially regulated by the treatment with CIGB-552. We then demonstrated that CIGB-552 is capable of modulating NF-kB in both 2D and 3D cell culture models. Finally, we show that the ability of CIGB-552 to negatively modulate NF-kB and HIF-1 pathways is impaired in the COMMD1 knock-out NCI-H460 cell line, confirming that COMMD1 is essential for the peptide mechanism of action.
Collapse
|
7
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
8
|
Oliva Arguelles B, Riera-Romo M, Guerra Vallespi M. Antitumour peptide based on a protein derived from the horseshoe crab: CIGB-552 a promising candidate for cancer therapy. Br J Pharmacol 2020; 177:3625-3634. [PMID: 32436254 DOI: 10.1111/bph.15132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/11/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023] Open
Abstract
Peptide-based cancer therapy has been of great interest due to the unique advantages of peptides, such as their low MW, the ability to specifically target tumour cells, easily available and low toxicity in normal tissues. Therefore, identifying and synthesizing novel peptides could provide a promising option for cancer patients. The antitumour second generation peptide, CIGB-552 has been developed as a candidate for cancer therapy. Proteomic and genomic studies have identified the intracellular protein COMMD1 as the specific target of CIGB-552. This peptide penetrates to the inside tumour cells to induce the proteasomal degradation of RelA, causing the termination of NF-κB signalling. The antitumour activity of CIGB-552 has been validated in vitro in different human cancer cell lines, as well as in vivo in syngeneic and xenograft tumour mouse models and in dogs with different types of cancers. The aim of this review is to present and discuss the experimental data obtained on the action of CIGB-552, including its mechanism of action and its therapeutic potential in human chronic diseases. This peptide is already in phase I clinical trials as antineoplastic drug and has also possible application for other inflammatory and metabolic conditions.
Collapse
Affiliation(s)
- Brizaida Oliva Arguelles
- Pharmaceutical Department, Laboratory of Tumor Biology, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Riera-Romo
- Pharmacology Department, Institute of Marine Sciences, Havana, Cuba
| | - Maribel Guerra Vallespi
- Pharmaceutical Department, Laboratory of Tumor Biology, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
9
|
Generation of stable reporter breast and lung cancer cell lines for NF-κB activation studies. J Biotechnol 2019; 301:79-87. [DOI: 10.1016/j.jbiotec.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 01/09/2023]
|
10
|
Phang CW, Gandah NA, Abd Malek SN, Karsani SA. Proteomic analysis of flavokawain C-induced cell death in HCT 116 colon carcinoma cell line. Eur J Pharmacol 2019; 853:388-399. [DOI: 10.1016/j.ejphar.2019.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
|
11
|
The first report of cases of pet dogs with naturally occurring cancer treated with the antitumor peptide CIGB-552. Res Vet Sci 2017; 114:502-510. [DOI: 10.1016/j.rvsc.2017.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 01/13/2023]
|
12
|
Núñez de Villavicencio-Díaz T, Ramos Gómez Y, Oliva Argüelles B, Fernández Masso JR, Rodríguez-Ulloa A, Cruz García Y, Guirola-Cruz O, Perez-Riverol Y, Javier González L, Tiscornia I, Victoria S, Bollati-Fogolín M, Besada Pérez V, Guerra Vallespi M. Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells. Data Brief 2015; 4:468-73. [PMID: 26306321 PMCID: PMC4534583 DOI: 10.1016/j.dib.2015.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022] Open
Abstract
CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis.
Collapse
Affiliation(s)
| | - Yassel Ramos Gómez
- Department of Systems Biology, Center for Genetic Engineering and Biotechnology, Cuba
| | | | | | | | - Yiliam Cruz García
- Department of Preclinical Studies, National Institute of Oncology and Radiobiology of Cuba, Cuba
| | - Osmany Guirola-Cruz
- Department of Systems Biology, Center for Genetic Engineering and Biotechnology, Cuba
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Luis Javier González
- Department of Systems Biology, Center for Genetic Engineering and Biotechnology, Cuba
| | - Inés Tiscornia
- Cell Biology Unit, Institut Pasteur of Montevideo, Uruguay
| | | | | | - Vladimir Besada Pérez
- Department of Systems Biology, Center for Genetic Engineering and Biotechnology, Cuba
| | | |
Collapse
|