1
|
Gruber CW. Plant-Derived Peptides: (Neglected) Natural Products for Drug Discovery. PLANTA MEDICA 2024; 90:627-630. [PMID: 38843800 PMCID: PMC11156498 DOI: 10.1055/a-2219-9724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 06/10/2024]
Abstract
Peptides have emerged as key regulators in various physiological processes, including growth, development, stress, and defense responses within plants as well as ecological interactions of plants with microbes and animals. Understanding and harnessing plant peptides can lead to the development of innovative strategies for crop improvement, increasing agricultural productivity, and enhancing resilience to environmental challenges such as drought, pests, and diseases. Moreover, some plant peptides have shown promise in human health applications, with potential therapeutic benefits as ingredients in herbal medicines as well as novel drug leads. The exploration of plant peptides is essential for unraveling the mysteries of plant biology and advancing peptide drug discovery. This short personal commentary provides a very brief overview about the field of plant-derived peptides and a personal word of motivation to increase the number of scientists in pharmacognosy working with these fascinating biomolecules.
Collapse
Affiliation(s)
- Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| |
Collapse
|
2
|
Berganayeva G, Kudaibergenova B, Litvinenko Y, Nazarova I, Sydykbayeva S, Vassilina G, Izdik N, Dyusebaeva M. Medicinal Plants of the Flora of Kazakhstan Used in the Treatment of Skin Diseases. Molecules 2023; 28:4192. [PMID: 37241933 PMCID: PMC10221907 DOI: 10.3390/molecules28104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The skin shows the physiological condition of the body's organs and systems that prevent infections and physical damage. Throughout the ages, in folk medicine, phytotherapy was considered a primary form of treatment in all countries, including Kazakhstan, due to the abundance and availability of plant-based remedies. This paper discusses several medicinal plants that are traditionally used in the treatment of skin diseases in the Republic of Kazakhstan. The chemical composition of these plants was analyzed, with a particular focus on the biologically active basic compounds responsible for their therapeutic efficiency in treating skin ailments.
Collapse
Affiliation(s)
- Gulzat Berganayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Bates Kudaibergenova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Yuliya Litvinenko
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Irada Nazarova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after Ilyas Zhansugurov, 187A, Taldykorgan 040000, Kazakhstan;
| | - Gulzira Vassilina
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Nazerke Izdik
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| | - Moldyr Dyusebaeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050042, Kazakhstan; (G.B.); (B.K.); (Y.L.); (I.N.); (G.V.); (N.I.)
| |
Collapse
|
3
|
Nicoletti M. The Anti-Inflammatory Activity of Viscum album. PLANTS (BASEL, SWITZERLAND) 2023; 12:1460. [PMID: 37050086 PMCID: PMC10096603 DOI: 10.3390/plants12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The therapeutic story of European mistletoe (Viscum album L.) presents a seesawing profile. In ancient times, this hemiparasitic plant was considered a panacea and even to be endowed with exceptional beneficial properties. In more recent times, despite its multiple uses in traditional medicines, some parts of the plant, in particular the berries, were considered poisonous and dangerous, including concerns of cytotoxicity, which spread serious suspicion on its medicinal utility. However, since the last century, medical interest in mistletoe has come back in force due to its utilization in clinical cancer treatments, based on its selective action on tumor cells. In Central Europe, the hydro-alcoholic extracts of European mistletoe register a relevant and continuous utilization in anthroposophic medicine, which is a holistic system that includes the utilization of phytomedicinal substances. In Switzerland and Germany, most physicians and patients use these products as complementary therapy in oncological treatments. However, despite its increasing use in this field, the results of mistletoe's use are not always convincing, and other aspects have appeared. Nowadays, products that contain mistletoe are utilized in several fields, including diet, phytotherapy, veterinary medicine and homeopathy, but in particular in cancer therapies as coadjuvant factors, in consideration of several positive effects including effects in the improvement of quality-of-life conditions and reinforcement of the immune system. In this review, based on the understanding of the association between cancer and inflammation, we propose a relationship between these recent uses of mistletoe, based on its antioxidant properties, which are supported by phytochemical and pharmacological data. The unicity of mistletoe metabolism, which is a direct consequence of its hemiparasitism, is utilized as a key interpretation element to explain its biological properties and steer its consequent therapeutic uses.
Collapse
Affiliation(s)
- Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Burdějová L, Moravcová D, Strouhalová D, Lunerová K. Pressurized water extraction - the fast and efficient method for isolation of bioactive proteins from Viscum album leaves. J Pharm Biomed Anal 2020; 195:113850. [PMID: 33429253 DOI: 10.1016/j.jpba.2020.113850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
New strategies for the fast, efficient, and environmentally friendly extraction of proteins are required to isolate desired bioactive compounds from a technological point of view. In this study, utilization of the pressurized water extraction (PWE) at low temperature (40 °C) for isolation of mistletoe proteins was investigated. PWE effectiveness, based on protein fingerprints, were compared with those obtained by conventional extractions using 10 mmol L-1 Tris-HCl buffer pH 8.3, 50 mmol L-1 phosphate buffer pH 7, or deionized water. The extracts were precipitated using acetone, trichloroacetic acid (TCA), and 20% (w/v) TCA/acetone and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PWE was more or equally efficient for isolation of mistletoe proteins than evaluated conventional extraction methods. The proteomic analysis combining mass spectrometry and database searching confirmed the presence of 35 proteins in PWE extracts precipitated by acetone, which was the most compounds identified from all studied extracts. The PWE high extraction power was revealed for multiple viscotoxin isoforms and specific enzymes indispensable for the synthesis of terpenes.
Collapse
Affiliation(s)
- Lenka Burdějová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| | - Dana Moravcová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| | - Dana Strouhalová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| | - Kamila Lunerová
- State Office for Nuclear Safety of the Czech Republic, The National Institute for Nuclear, Chemical and Biological Protection, Kamenná 71, 262 31 Milín, Czech Republic.
| |
Collapse
|
5
|
Peñaloza E, Holandino C, Scherr C, de Araujo PIP, Borges RM, Urech K, Baumgartner S, Garrett R. Comprehensive Metabolome Analysis of Fermented Aqueous Extracts of Viscum album L. by Liquid Chromatography-High Resolution Tandem Mass Spectrometry. Molecules 2020; 25:E4006. [PMID: 32887375 PMCID: PMC7504787 DOI: 10.3390/molecules25174006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
Fermented aqueous extracts of Viscum album L. are widely used for cancer treatment in complementary medicine. The high molecular weight compounds viscotoxins and lectins are considered to be the main active substances in the extracts. However, a vast number of small molecules (≤1500 Da) is also expected to be present, and few studies have investigated their identities. In this study, a comprehensive metabolome analysis of samples of fermented aqueous extracts of V. album from two host tree species (Malus domestica and Pinus sylvestris), both prepared by two pharmaceutical manufacturing processes, was performed by liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS). A total of 212 metabolites were putatively annotated, including primary metabolites (e.g., amino acids, organic acids, etc.) and secondary metabolites (mostly phenolic compounds). A clear separation between V. album samples according to the host tree species, but not due to manufacturing processes, was observed by principal component analysis. The biomarkers responsible for this discrimination were assessed by partial least squares-discriminant analysis. Because V. album extracts from different host trees have different clinical applications, the present work highlights the possibility of characterizing the metabolome for identification and traceability of V. album fermented aqueous extracts.
Collapse
Affiliation(s)
- Evelyn Peñaloza
- Metabolomics Laboratory, Institute of chemistry, Federal University of Rio de Janeiro, 21941-598 Rio de Janeiro, Brazil; (E.P.); (P.I.P.d.A.)
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| | - Carla Holandino
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| | - Claudia Scherr
- Hiscia Research Institute, Society for Cancer Research, 4144 Arlesheim, Switzerland; (C.S.); (K.U.); (S.B.)
| | - Paula I. P. de Araujo
- Metabolomics Laboratory, Institute of chemistry, Federal University of Rio de Janeiro, 21941-598 Rio de Janeiro, Brazil; (E.P.); (P.I.P.d.A.)
| | - Ricardo M. Borges
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| | - Konrad Urech
- Hiscia Research Institute, Society for Cancer Research, 4144 Arlesheim, Switzerland; (C.S.); (K.U.); (S.B.)
| | - Stephan Baumgartner
- Hiscia Research Institute, Society for Cancer Research, 4144 Arlesheim, Switzerland; (C.S.); (K.U.); (S.B.)
- Institute of Integrative Medicine, University of Witten/Herdecke, 58313 Herdecke, Germany
| | - Rafael Garrett
- Metabolomics Laboratory, Institute of chemistry, Federal University of Rio de Janeiro, 21941-598 Rio de Janeiro, Brazil; (E.P.); (P.I.P.d.A.)
| |
Collapse
|
6
|
Sieiro-Sampedro T, Briz-Cid N, Pose-Juan E, Figueiredo-González M, González-Barreiro C, Simal-Gándara J, Cancho-Grande B, Rial-Otero R. Tetraconazole alters the methionine and ergosterol biosynthesis pathways in Saccharomyces yeasts promoting changes on volatile derived compounds. Food Res Int 2020; 130:108930. [DOI: 10.1016/j.foodres.2019.108930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/23/2023]
|
7
|
Righetti PG, Boschetti E. Low-abundance plant protein enrichment with peptide libraries to enlarge proteome coverage and related applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110302. [PMID: 31779915 DOI: 10.1016/j.plantsci.2019.110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/15/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In plant tissues proteins are present in low amounts but in a very large number. To this peculiar situation many complex foreign components render protein extraction and purification very difficult. In the last several years interesting technologies have been described to improve the technical situation to the point that some methodologies allow reaching very low-abundance proteins and minor allergens. Among enrichment methods the one documented in this report is based on combinatorial peptide ligand libraries (CPLLs) that emerged in the last decade by contributing to largely improve the knowledge in plant proteomics. It is the aim of this review to describe how this technology allows detecting low-abundance proteins from various plant tissues and to report the dynamics of the proteome components in response to environmental changes and biotic attacks. Typical documented examples with the description of their scientific interest are reported. The described technical approach and selected applications are considered as one of the most advanced approaches for plant proteomics investigations with possibilities not only to enlarge the knowledge of plant proteomes but also to discover novel allergens as well as plant biomarkers subsequent to stressful situations.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Egisto Boschetti
- Scientific Consultant, JAM Conseil, 92200, Neuilly-sur-Seine, France
| |
Collapse
|
8
|
Lerma-García MJ, Nicoletti M, Simó-Alfonso EF, Righetti PG, Fasoli E. Proteomic fingerprinting of apple fruit, juice, and cider via combinatorial peptide ligand libraries and MS analysis. Electrophoresis 2018; 40:266-271. [DOI: 10.1002/elps.201800320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Maria Nicoletti
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | | | - Pier Giorgio Righetti
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - Elisa Fasoli
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| |
Collapse
|