1
|
Study on Tissue Homogenization Buffer Composition for Brain Mass Spectrometry-Based Proteomics. Biomedicines 2022; 10:biomedicines10102466. [PMID: 36289728 PMCID: PMC9598821 DOI: 10.3390/biomedicines10102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from brain tissue on the yield of protein extraction and the number and type of extracted proteins. Three different types of buffers were compared—detergent-based buffer (DB), chaotropic agent-based buffer (CAB) and buffer without detergent and chaotropic agent (DFB). Based on label-free quantitative protein analysis, detergent buffer was identified as the most suitable for global proteomic profiling of brain tissue. It allows the most efficient extraction of membrane proteins, synaptic and synaptic membrane proteins along with ribosomal, mitochondrial and myelin sheath proteins, which are of particular interest in the field of neurodegenerative disorders research.
Collapse
|
2
|
Bao J, Liang Z, Gong X, Zhao Y, Wu M, Liu W, Tu C, Wang X, Shu X. Tangeretin Inhibits BACE1 Activity and Attenuates Cognitive Impairments in AD Model Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1536-1546. [PMID: 35084179 DOI: 10.1021/acs.jafc.1c07241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tangeretin (TAN) exhibits many bioactivities, including neuroprotective effects. However, the efficacy of TAN in Alzheimer's disease (AD) has not been sufficiently investigated. In the present study, we integrated behavioral tests, pathology assessment, and biochemical analyses to elucidate the antidementia activity of TAN in APPswe/PSEN1dE9 transgenic (Tg) mice. At supplementation levels of 100 mg/kg body weight per day, TAN significantly attenuated the cognitive impairment of Tg mice in behavioral tests. These effects were associated with less synaptic impairments and fewer β-amyloid accumulations after TAN administration. Furthermore, our study revealed that TAN possessed powerful inhibitory activity against β-secretase both in vitro and in vivo, which played a crucial role in the process of Aβ generation. These findings indicate that TAN is a potential drug for preventing AD pathology. The key mechanism underlying the antidementia effect of TAN may include its inhibitory activity against β-secretase.
Collapse
Affiliation(s)
- Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Zheng Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yanna Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Mengjuan Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chenyu Tu
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
3
|
Gao Y, Liu J, Wang J, Liu Y, Zeng LH, Ge W, Ma C. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells. Brain Pathol 2022; 32:e13047. [PMID: 35016256 PMCID: PMC9245939 DOI: 10.1111/bpa.13047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023] Open
Abstract
The hippocampus and entorhinal cortex (EC), the earliest affected areas, are considered relative to early memory loss in Alzheimer's disease (AD). The hippocampus is composed of heterogeneous subfields that are affected in a different order and varying degrees during AD pathogenesis. In this study, we conducted a comprehensive proteomic analysis of the hippocampal subfields and EC region in human postmortem specimens obtained from the Chinese human brain bank. Bioinformatics analysis identified region‐consistent differentially expressed proteins (DEPs) which associated with astrocytes, and region‐specific DEPs which associated with oligodendrocytes and the myelin sheath. Further analysis illuminated that the region‐consistent DEPs functioned as connection of region‐specific DEPs. Moreover, in region‐consistent DEPs, the expression level of S100A10, a marker of protective astrocytes, was increased in both aging and AD patients. Immunohistochemical analysis confirmed an increase in the number of S100A10‐positive astrocytes in all hippocampal subfields and the EC region of AD patients. Dual immunofluorescence results further showed that S100A10‐positive astrocytes contained apoptotic neuron debris in AD patients, suggesting that S100A10‐positive astrocytes may protect brain through phagocytosis of apoptotic neurons. In region‐specific DEPs, the proteome showed a specific reduction of oligodendrocytes and myelin markers in CA1, CA3, and EC regions of AD patients. Immunohistochemical analysis confirmed the loss of myelin in EC region. Above all, these results highlight the role of the glial cells in AD and provide new insights into the pathogenesis of AD and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanpan Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China.,State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yifan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism, Affiliated Hospital of Hebei University, Baoding, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Zhao Y, Bao J, Liu W, Gong X, Liang Z, Li W, Wu M, Xiao Y, Sun B, Wang X, Wang JZ, Wang J, Shu X. Spatial Training Attenuates Long-Term Alzheimer’s Disease-Related Pathogenic Processes in APP/PS1 Mice. J Alzheimers Dis 2021; 85:1453-1466. [DOI: 10.3233/jad-215016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Alzheimer’s disease (AD), with cognitive impairment as the main clinical manifestation, is a progressive neurodegenerative disease. The assembly of amyloid-β (Aβ) as senile plaques is one of the most well-known histopathological alterations in AD. Several studies reported that cognitive training reduced Aβ deposition and delayed memory loss. However, the long-term benefits of spatial training and the underlying neurobiological mechanisms have not yet been elucidated. Objective: To explore the long-term effects of spatial training on AD-related pathogenic processes in APP/PS1 mice. Methods: We used Morris water maze (MWM), Open Field, Barnes Maze, western blotting, qPCR, and immunofluorescence. Results: One-month MWM training in APP/PS1 mice at 2.5 months of age could attenuate Aβ deposition and decrease the expression of β-secretase (BACE1) and amyloid-β protein precursor (AβPP) with long-term effects. Simultaneously, regular spatial training increased the expression of synapse-related proteins in the hippocampus. Moreover, MWM training increased adult hippocampal neurogenesis in AD model mice. Nonetheless, cognitive deficits in APP/PS1 transgenic mice at 7 months of age were not attenuated by MWM training at an early stage. Conclusion: Our study demonstrates that MWM training alleviates amyloid plaque burden and adult hippocampal neurogenesis deficits with long-term effects in AD model mice.
Collapse
Affiliation(s)
- Yang Zhao
- International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, China
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
| | - Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
| | - Zheng Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
| | - Wenshuang Li
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
| | - Mengjuan Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Yifan Xiao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
5
|
The Potential Effects of Oxidative Stress-Related Plasma Abnormal Protein Aggregate Levels on Brain Volume and Its Neuropsychiatric Consequences in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3666327. [PMID: 34434484 PMCID: PMC8382529 DOI: 10.1155/2021/3666327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Background Oxidative stress has been implicated in the pathogenesis of many diseases, including Parkinson's disease. Large protein aggregates may be produced after the breakdown of the proteostasis network due to overt oxidative stress. Meanwhile, brain volume loss and neuropsychiatric deficits are common comorbidities in Parkinson's disease patients. In this study, we applied a mediation model to determine the potential influences of oxidative stress-related plasma abnormal protein aggregate levels on brain volume and neuropsychiatric consequences in Parkinson's disease. Method 31 patients with PD and 24 healthy controls participated in this study. The PD patients were further grouped according to the presentation of cognitive decline or not. All participants received complete examinations to determine plasma abnormal protein aggregates levels, brain volume, and neuropsychiatric performance. The results were collected and analyzed in a single-level three-variable mediation model. Results Patients with PD cognitive decline exhibited higher plasma NfL levels, decreased regional brain volume, and poor neuropsychiatric subtest results compared with PD patients with normal cognition, with several correlations among these clinical presentations. The mediation model showed that the superior temporal gyrus completely mediated the effects of elevated plasma NfL levels due to the poor psychiatric performance of picture completion and digit span. Conclusion This study provides insight into the effects of oxidative stress-related plasma abnormal protein aggregate levels on regional brain volume and neuropsychiatric consequences in Parkinson's disease patients.
Collapse
|
6
|
Stepler KE, Mahoney ER, Kofler J, Hohman TJ, Lopez OL, Robinson RAS. Inclusion of African American/Black adults in a pilot brain proteomics study of Alzheimer's disease. Neurobiol Dis 2020; 146:105129. [PMID: 33049317 PMCID: PMC7990397 DOI: 10.1016/j.nbd.2020.105129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) disproportionately affects certain racial and ethnic subgroups, such as African American/Black and Hispanic adults. Genetic, comorbid, and socioeconomic risk factors contribute to this disparity; however, the molecular contributions have been largely unexplored. Herein, we conducted a pilot proteomics study of postmortem brains from African American/Black and non-Hispanic White adults neuropathologically diagnosed with AD compared to closely-matched cognitively normal individuals. Examination of hippocampus, inferior parietal lobule, and globus pallidus regions using quantitative proteomics resulted in 568 differentially-expressed proteins in AD. These proteins were consistent with the literature and included glial fibrillary acidic protein, peroxiredoxin-1, and annexin A5. In addition, 351 novel proteins in AD were identified, which could partially be due to cohort diversity. From linear regression analyses, we identified 185 proteins with significant race x diagnosis interactions across various brain regions. These differences generally were reflective of differential expression of proteins in AD that occurred in only a single racial/ethnic group. Overall, this pilot study suggests that disease understanding can be furthered by including diversity in racial/ethnic groups; however, this must be done on a larger scale.
Collapse
Affiliation(s)
- Kaitlyn E Stepler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
| | - Emily R Mahoney
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America; Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States of America.
| |
Collapse
|
7
|
Mukilan M, Rajathei DM, Jeyaraj E, Kayalvizhi N, Rajan KE. MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat Cynopterus sphinx. Gene 2018; 671:10-20. [PMID: 29859284 DOI: 10.1016/j.gene.2018.05.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Earlier, we showed that micro RNA-132 (miR-132) regulate the immediate early genes (IEGs) in the olfactory bulb (OB) of fruit bat Cynopterus sphinx during olfactory learning. This study was designed to examine whether the miR-132 regulate other proteins in OB during olfactory learning. To test this, miR-132 anti-sense oligodeoxynucleotide (AS-ODN) was delivered to the OB and then trained to novel odor. The 2-dimensional gel electrophoresis analysis showed that inhibition of miR-132 altered olfactory training induced expression of 321 proteins. Further, liquid chromatography-mass spectrometry (LC-MS/MS) analysis reveals the identity of differently expressed proteins such as phosphoribosyl transferase domain containing protein (PRTFDC 1), Sorting nexin-8 (SNX8), Creatine kinase B-type (CKB) and Annexin A11 (ANX A11). Among them PRTFDC 1 showing 189 matching peptides with highest sequence coverage (67.0%) and protein-protein interaction analysis showed that PRTFDC 1 is a homolog of hypoxanthine phosphoribosyltransferase-1 (HPRT-1). Subsequent immunohistochemical analysis (IHC) showed that inhibition of miR-132 down-regulated HPRT expression in OB of C. sphinx. In addition, western blot analysis depicts that HPRT, serotonin transporter (SERT), N-methyl-d-asparate (NMDA) receptors (2A,B) were down-regulated, but not altered in OB of non-sense oligodeoxynucleotide (NS-ODN) infused groups. These analyses suggest that miR-132 regulates the process of olfactory learning and memory formation through SERT and NMDA receptors signalling, which is possibly associated with the PRTFDC1-HPRT interaction.
Collapse
Affiliation(s)
- Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - David Mary Rajathei
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Edwin Jeyaraj
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
8
|
Comparative characterization of rat hippocampal plasma membrane and mitochondrial membrane proteomes based on a sequential digestion-centered combinative strategy. Anal Bioanal Chem 2018; 410:3119-3131. [DOI: 10.1007/s00216-018-0995-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 12/27/2022]
|