1
|
Ran Y, Wu K, Hu C, Liang R, Zhang L, Xiao J, Peng Y, Sun W. Downregulated APOD and FCGR2A correlates with immune infiltration and lipid-induced symptoms of irritable bowel syndrome. Sci Rep 2023; 13:14211. [PMID: 37648784 PMCID: PMC10469184 DOI: 10.1038/s41598-023-41004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
Fat intake is among the most significant triggers for symptom development in patients with irritable bowel syndrome (IBS). Nevertheless, long-term restriction in fatty foods ingestion may lead to nutritional inadequacies. This study aimed to identify the crucial genes involved in lipid-induced gastrointestinal symptoms, contributing to helping IBS patients regulate fat. The clinical characteristics of the subjects were collected by questionnaire investigation and analyzed using multivariate logistic regression. Differentially expressed genes (DEG) and signaling pathways were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. ImmuInfiltration and CIBERSORT packages evaluated small intestine immune cell infiltration. Random forest and SVM-RFE algorithms were used to select hub genes. A receiver operating characteristic curve was used to access the diagnostic significance of each hub gene. Gene Set Enrichment Analysis (GSEA) was performed to identify hub genes' molecular processes in IBS development after lipid infusion. IBS patients' risk, severity, and quality of life increased with fat intake. In total, 116 robust DEGs were identified in IBS patients after lipid infusion using the GSE166869 dataset and were mainly clustered in the immune and inflammatory pathways. IBS patients had greater Neutrophils, CD4+ T cells, and M1 Macrophages than healthy controls. Furthermore, infiltration levels of Neutrophils and resting memory CD4+ T cells were inversely related to the expression of hub genes (IGKV1D-43, IGKV1-12, APOD, FCGR2A and IGKV2-29). After lipid infusion, GSEA results of each hub gene indicated the relevance of proinflammatory pathways in IBS pathogenesis. After verification, only APOD and FCGR2A were stably downregulated in small intestinal mucosa and plasma of IBS patients. The area under the curve of APOD combined with FCGR2A expression was 0.9. APOD and FCGR2A may be promising biomarkers for IBS diagnosis and lipid-sensitive IBS patients. Their potential roles in the immune microenvironment of the small intestinal mucosa may provide a vital clue to IBS precision therapy.
Collapse
Affiliation(s)
- Yamei Ran
- Department of Gastroenterology and Hepatology, Thirteenth People's Hospital of Chongqing (Chongqing Geriatric Hospital), Chongqing, 400053, China
| | - Kangqi Wu
- Department of Gastroenterology and Hepatology, Thirteenth People's Hospital of Chongqing (Chongqing Geriatric Hospital), Chongqing, 400053, China
| | - Chenglin Hu
- Department of Standardization Training Management, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Renzheng Liang
- Department of Gastroenterology and Hepatology, Thirteenth People's Hospital of Chongqing (Chongqing Geriatric Hospital), Chongqing, 400053, China
| | - Li Zhang
- Department of Gastroenterology and Hepatology, Thirteenth People's Hospital of Chongqing (Chongqing Geriatric Hospital), Chongqing, 400053, China
| | - Juan Xiao
- Department of Gastroenterology and Hepatology, Thirteenth People's Hospital of Chongqing (Chongqing Geriatric Hospital), Chongqing, 400053, China
| | - Yongmei Peng
- Department of Gastroenterology and Hepatology, Thirteenth People's Hospital of Chongqing (Chongqing Geriatric Hospital), Chongqing, 400053, China
| | - Wenjing Sun
- Department of Gastroenterology and Hepatology, Thirteenth People's Hospital of Chongqing (Chongqing Geriatric Hospital), Chongqing, 400053, China.
| |
Collapse
|
2
|
Feng J, Zheng N, Fan X, Li S, Jiang Y, Yi X, Yang H. Association of laxatives use with incident dementia and modifying effect of genetic susceptibility: a population-based cohort study with propensity score matching. BMC Geriatr 2023; 23:122. [PMID: 36870957 PMCID: PMC9985868 DOI: 10.1186/s12877-023-03854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Constipation was associated with incidence of dementia and cognitive decline. Laxatives are the mainstay of constipation management and are commonly used among older populations for both treatment and prevention of constipation. However, the association between use of laxatives and incident dementia, and whether laxatives use may modify the effect of genetic predisposition on dementia remains unclear. METHODS We applied 1:3 propensity score matching to balance the baseline characteristics of the laxative users versus non-users and to reduce potential confounders using multi-variates adjusted Cox hazards regression models. We categorized genetic risk into three groups (low, middle, and high) through a genetic risk score of common genetic variants. Information on laxatives use was assessed at baseline and categories into four varieties, including bulk forming laxatives, softeners and emollients, osmotic laxatives, and stimulant laxatives. RESULTS Of 486,994 participants, there were 14,422 laxatives users in UK Biobank. After propensity score matching, participants with use of laxatives (n = 14,422) and matched non-laxative (n = 43,266) exposed individuals were enrolled. Over follow-up to 15 years, there were 1377 participants developed dementia (539 for Alzheimer's disease, and 343 for vascular dementia). The use of laxatives had greater risk of dementia (HR, 1.72; 95% CI:1.54-1.92), Alzheimer's disease (HR, 1.36; 95% CI: 1.13-1.63), and vascular dementia (HR, 1.53; 95% CI: 1.23-1.92). Compared to non-laxative exposed participants, those with use of softeners and emollients drugs, stimulant laxatives, and osmotic laxatives were associated with 96% (HR, 1.96; 95 CI: 1.23-3.12; P = 0.005), 80% (HR, 1.80; 95% CI: 1.37-2.37; P < 0.001), and 107% (HR, 2.07; 95% CI: 1.47-2.92; P < 0.001) higher risk of developed incident dementia, respectively. In joint effect analysis, compared to participants with low/middle genetic susceptibility and non-laxatives use, the HR (95% CIs) of dementia was 4.10 (3.49-4.81) for those with high genetic susceptibility plus use of laxatives. There was an additive interaction between laxatives use and genetic susceptibility on dementia (RERI: 0.736, 95% CI: 0.127 to 1.246; AP: 0.180, 95% CI: 0.047 to 0.312). CONCLUSIONS Use of laxatives was associated with higher risk of dementia and modify the effect of genetic susceptibility on dementia. Our findings suggested that attention should be paid to the relationship between laxatives use and dementia, especially in people at high genetic susceptibility.
Collapse
Affiliation(s)
- Jiangtao Feng
- Department of Orthopedics, Tianjin NanKai Hospital, Tianjin, 300100, China
| | - Nan Zheng
- Department of Network Security and Informatization, Tianjin Medical University, Tianjin, 300070, China
| | - Xutong Fan
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Shu Li
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhan Jiang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China. .,Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China.
| |
Collapse
|
3
|
Big Data in Gastroenterology Research. Int J Mol Sci 2023; 24:ijms24032458. [PMID: 36768780 PMCID: PMC9916510 DOI: 10.3390/ijms24032458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Studying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.
Collapse
|
4
|
Fan W, Fang X, Hu C, Fei G, Xiao Q, Li Y, Li X, Wood JD, Zhang X. Multiple rather than specific autoantibodies were identified in irritable bowel syndrome with HuProt™ proteome microarray. Front Physiol 2022; 13:1010069. [PMID: 36262261 PMCID: PMC9573966 DOI: 10.3389/fphys.2022.1010069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Immune activation and several autoantibodies might be involved in the pathophysiology of irritable bowel syndrome (IBS). We aimed to identify serum biomarkers for IBS by HuProt™ microarray. IBS patients met Rome III criteria were enrolled. Control groups included healthy controls (HCs) and disease controls (DCs). In stage I, we profiled sera from IBS and control groups with HuProt™ microarrays. Based on significant different proteins in stage I, IBS focused microarrays were constructed and validated in a larger cohort in stage II, then decision tree models were generated to establish a combination of biomarkers. In stage III, 4 purified proteins were verified by ELISA. Finally, we analyzed the correlation of autoantibodies with symptoms. In stage I, we identified 47 significant different proteins including 8 autoantibodies of IgG, 2 of IgA between IBS and HCs; 13 autoantibodies of IgG, 13 of IgA between IBS and DCs. In stage II, we found the positive rates of 14 IgG and IgA autoantibodies in IBS were significantly higher than HCs. Five autoantibodies of IgG and 7 IgA were comprehensively involved in differentiating IBS and HCs with the sensitivity and specificity to diagnose IBS as 40%–46.7% and 79.4%–86.3%. The median optical density value of ELAVL4 (IgG) and PIGP (IgA) were significantly higher in IBS than HCs. Parts of autoantibodies above were related to IBS symptoms. We found a combination of autoantibodies to differentiate IBS with HCs, but no specific autoantibodies could serve as serum biomarkers for IBS.
Collapse
Affiliation(s)
- Wenjuan Fan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiucai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiucai Fang,
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guijun Fei
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyun Xiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology and Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqing Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jackie D. Wood
- Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Yu L, Yang X, Guan W, Zhang D, Ren S, Xing Y, An D, Zhang J, Zhu Y, Zhu A. Analysis of Key Genes for Slow Transit Constipation Based on RNA Sequencing. Int J Gen Med 2022; 15:7569-7579. [PMID: 36199586 PMCID: PMC9528044 DOI: 10.2147/ijgm.s380208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aims to identify key genes in slow transit constipation (STC). We also sought to explore the potential link between STC and colorectal cancer. Patients and Methods mRNA expression profiles were obtained by RNA sequencing, and differentially expressed genes were identified. Functional enrichment analysis and a protein–protein interaction (PPI) network was explored, and differentially expressed genes common to STC and colorectal cancer were examined. Analysis of the effect of constipation and colorectal cancer common genes on the overall survival of colorectal cancer patients based on GEPIA database. Results Functional enrichment showed that significantly different genes are related to lymphocyte chemotaxis, positive regulation of inflammatory response, cellular response to tumor necrosis factor, extracellular region, extracellular space and chemokine activity. The hub gene for STC was found in the PPI network. In addition, AQP8 and CFD were common differential genes for STC and colorectal cancer. AQP8 affects overall survival in patients with colorectal cancer. Conclusion Our findings will contribute to understanding the pathology of STC at the molecular level, with the first discovery that AQP8 may be a hub gene in the transition from STC to colorectal cancer.
Collapse
Affiliation(s)
- Linfeng Yu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiuding Yang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wenlong Guan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Dongxu Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Shuo Ren
- Department of Gastrointestinal Surgery, Sichuan Cancer Hospital, Chengdu, People’s Republic of China
| | - Yanwei Xing
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Da An
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yuekun Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Anlong Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Correspondence: Anlong Zhu, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China, Tel/Fax +86 13504848555, Email
| |
Collapse
|
6
|
Karpe AV, Liu JW, Shah A, Koloski N, Holtmann G, Beale DJ. Utilising lipid and, arginine and proline metabolism in blood plasma to differentiate the biochemical expression in functional dyspepsia (FD) and irritable bowel syndrome (IBS). Metabolomics 2022; 18:38. [PMID: 35687195 DOI: 10.1007/s11306-022-01900-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Functional gastrointestinal disorders (FGID) such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are highly prevalent and debilitating attributed to altered gut function and gut-brain interactions. FGID can be reliably diagnosed based upon the symptom pattern; but in the clinical setting FD or IBS a frequent diagnoses of exclusion after relevant structural causes of symptoms have been ruled out by appropriate testing. Thus far, there is no established biomarker for FGIDs. To address this limitation, we utilised multi-omics and chemometrics integration to characterise the blood plasma biochemistry in patients with IBS, FD, an overlap of FD/IBS, and controls using liquid chromatography-mass spectrometry (LC-MS) techniques.Cholesterol metabolism products Cholest-5,24-dien-3β-ol, 3-O-β-D-glucopyranoside, energy pathway metabolites, immunoglobulin-γ2 and immunoglobulin-κ, and carbonic anhydrase-1 proteins were particularly elevated in IBS. Furthermore, arginine and proline metabolisms, thyroid hormone synthesis, ferroptosis and, complementary and coagulation cascades were particularly upregulated in patients with IBS. Cer(d18:1/26:1(17Z)) and PI(14:0/22:1(11Z)) lipids were elevated in FD and FD-IBS but were depleted in IBS. Markers of central carbon metabolism and lipidome profiles allowed better discrimination and model predictability than metaproteome profile in healthy and FGID conditions.Overall, the multi-omics integration allowed the discrimination of healthy controls and FGID patients. It also effectively differentiated the biochemistry of FGID subtypes including FD, IBS and FD-IBS co-occurrence. This study points towards the possibility of multi-omics integration for rapid and high throughput analysis of plasma samples to support clinicians screen and diagnose patients with suspected FGIDs.
Collapse
Affiliation(s)
- Avinash V Karpe
- CSIRO Land and Water, P. O. Box 2583, 4001, Dutton Park, QLD, Australia
- Department of Chemistry & Biotechnology, School of Science, Computing & Engineering Technologies (SoSCET), Swinburne University of Technology, 3122, Hawthorn, VIC, Australia
| | - Jian-Wei Liu
- CSIRO Land and Water, Black Mountain, Clunies Ross Street, 2601, Acton, ACT, Australia
| | - Ayesha Shah
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, 4103, Woolloongabba, QLD, Australia
| | - Natasha Koloski
- Faculty of Health and Medicine, University of Newcastle, 2308, Callaghan, NSW, Australia
- School of Medicine, The University of Queensland, 4072, St. Lucia, QLD, Australia
| | - Gerald Holtmann
- Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, 4103, Woolloongabba, QLD, Australia
- School of Medicine, The University of Queensland, 4072, St. Lucia, QLD, Australia
| | - David J Beale
- CSIRO Land and Water, P. O. Box 2583, 4001, Dutton Park, QLD, Australia.
| |
Collapse
|
7
|
Keddy KH, Saha S, Okeke IN, Kalule JB, Qamar FN, Kariuki S. Combating Childhood Infections in LMICs: evaluating the contribution of Big Data Big data, biomarkers and proteomics: informing childhood diarrhoeal disease management in Low- and Middle-Income Countries. EBioMedicine 2021; 73:103668. [PMID: 34742129 PMCID: PMC8579132 DOI: 10.1016/j.ebiom.2021.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 01/20/2023] Open
Abstract
Despite efforts to reduce the global burden of childhood diarrhoea, 50% of all cases globally occur in children under five years in Low–Income and Middle- Income Countries (LMICs) and knowledge gaps remain regarding the aetiological diagnosis, introduction of diarrhoeal vaccines, and the role of environmental enteric dysfunction and severe acute malnutrition. Biomarkers may assist in understanding disease processes, from diagnostics, to management of childhood diarrhoea and the sequelae to vaccine development. Proteomics has the potential to assist in the identification of new biomarkers to understand the processes in the development of childhood diarrhoea and to aid in developing new vaccines. Centralised repositories that enable mining of large data sets to better characterise risk factors, the proteome of both the patient and the different diarrhoeal pathogens, and the environment, could inform patient management and vaccine development, providing a systems biological approach to address the burden of childhood diarrhoea in LMICs.
Collapse
Affiliation(s)
- Karen H Keddy
- Tuberculosis Platform, South African Medical Research Council, 1 Soutpansberg Rd, Pretoria, 0001, South Africa.
| | - Senjuti Saha
- Child Health Research Foundation, 23/2 Khilji Road, Mohammadpur, Dhaka 1207, Bangladesh
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - John Bosco Kalule
- Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Uganda
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health. Aga Khan University, Stadoum road Karachi, Pakistan 74800
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, Nairobi, Kenya
| |
Collapse
|
8
|
Chai YN, Qin J, Li YL, Tong YL, Liu GH, Wang XR, Liu CY, Peng MH, Qin CZ, Xing YR. TMT proteomics analysis of intestinal tissue from patients of irritable bowel syndrome with diarrhea: Implications for multiple nutrient ingestion abnormality. J Proteomics 2020; 231:103995. [PMID: 33011346 DOI: 10.1016/j.jprot.2020.103995] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
Diarrheal irritable bowel syndrome (IBS-D) is a chronic functional bowel disease with no clear diagnostic markers and no satisfactory treatment strategies. In recent years, the importance of intestinal microstructure and function in IBS-D has been emphasized. However, the intestinal tissue proteomics of IBS-D patients has not been analyzed. Here, we systematically analyzed the molecule profiling of the intestinal tissues in IBS-D patients through tandem mass tag (TMT)-based proteomics for the first time, aiming to reveal the pathogenesis and provide evidence for diagnosis and treatment of IBS-D. Five IBS-D patients and five healthy subjects were selected, biopsy tissue samples from the junction of sigmoid and rectum were analyzed by TMT proteomics. Differentially expressed proteins were obtained and bioinformatics analysis was performed. Furthermore, parallel reaction monitoring (PRM) and q-PCR detection were applied to validate the differentially expressed proteins. Eighty differentially expressed proteins were screened, 48 of which were up-regulated and 32 were down-regulated (fold change >1.2, P < 0.05). Bioinformatics analysis showed that these proteins were significantly enriched in the nutrient ingestion pathways which are related to immune molecules. SELENBP1, VSIG2, HMGB1, DHCR7, BCAP31 and other molecules were significantly changed. Our study revealed the underlying mechanisms of IBS-D intestinal dysfunction. SIGNIFICANCE: Irritable bowel syndrome with diarrhea (IBS-D) is a worldwide chronic intestinal disease with no definite diagnostic markers. It is still a challenge to accurately locate the pathogenesis of patients for appropriate treatment strategy. Established proteomics studies of IBS-D are only based on urine, blood, or tissue samples from animals. Our study was the first TMT proteomics analysis on intestinal biopsy tissues of patients with IBS-D, which revealed the changes of molecular spectrum of actual intestinal conditions in patients with IBS-D. Some important molecules and signaling pathways have been found abnormal in our study, which were related with nutrient uptake. They not only provided preliminary clues for low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) intolerance, an unsolved conundrum of IBS-D, but also revealed obscure problems of protein, lipid, and other nutrients ingestion in IBS-D patients. Some of these differentially expressed molecules have been preliminarily verified, and will may be potential candidate molecules for diagnostic markers of IBS-D.
Collapse
Affiliation(s)
- Yu-Na Chai
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jin Qin
- Digestive endoscopy center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan-le Li
- Digestive department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ya-Lin Tong
- Digestive department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guang-Hui Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin-Ru Wang
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cheng-Ye Liu
- Department of orthopedics, The Third Affiliated Hospital of Henan University of Science and Technology (Luoyang Dong fang Hospital), Luoyang 471003, China
| | - Ming-Hang Peng
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China
| | - Chong-Zhen Qin
- Department of pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yu-Rong Xing
- Center of Health Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
9
|
Yu Q, Liu X, Huang H, Zheng X, Pan X, Fang J, Meng L, Zhou C, Zhang X, Li Z, Zou D. Mass spectrometry-based metabolomics for irritable bowel syndrome biomarkers. Therap Adv Gastroenterol 2019; 12:1756284819886425. [PMID: 35154385 PMCID: PMC8832300 DOI: 10.1177/1756284819886425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common gastrointestinal disorder without obvious structural abnormalities or consistent associated biomarkers, making its diagnosis difficult. In the present study, we used a urine-based metabolomics approach to identify IBS biomarkers. METHODS We used an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) on urine samples from patients suffering from IBS and healthy controls. Data were coupled for multivariate statistical analysis methods. RESULTS We selected 30 differential metabolites associated with IBS and found steroid hormone biosynthesis and histidine metabolism alterations in patients with IBS that may be involved in the pathogenesis of the disease. In addition, we identified a panel of five metabolite markers composed of cortisone, citric acid, tiglylcarnitine, N6,-N6,-N6-trimethyl-L-lysine and L-histidine that could be used to discriminate between patients and healthy controls and may be appropriate as IBS diagnosis biomarkers. CONCLUSION Our findings indicate that metabolomics combined with pattern recognition can be useful to identify disease diagnostic IBS markers. CLINICAL TRIAL REGISTRATION ChiCTR1800020072.
Collapse
Affiliation(s)
- Qihong Yu
- Digestive Department, Changhai Hospital, Shanghai, China
| | - Xinru Liu
- Institute of Human Phenotypes, Fudan University, Shanghai, China
| | - Haojie Huang
- Digestive Department, Changhai Hospital, Shanghai, China
| | | | - Xue Pan
- Digestive Department, Changhai Hospital, Shanghai, China
| | - Junwei Fang
- Core Facility of Basic Medical Sciences, College of Basic Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liyuan Meng
- Core Facility of Basic Medical Sciences, College of Basic Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chunhua Zhou
- Digestive Department, Changhai Hospital, Shanghai, China
| | - Xiaocui Zhang
- Core Facility of Basic Medical Sciences, College of Basic Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhaoshen Li
- Digestive Department, Changhai Hospital, Shanghai 200433
| | - Duowu Zou
- Digestive Department, Changhai Hospital, Shanghai 200433
| |
Collapse
|
10
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|