1
|
Ru J, Wang Y, Li Z, Wang J, Ren C, Zhang J. Technologies of targeting histone deacetylase in drug discovery: Current progress and emerging prospects. Eur J Med Chem 2023; 261:115800. [PMID: 37708798 DOI: 10.1016/j.ejmech.2023.115800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-l-lysine side chains in histones and non-histones, which are key to epigenetic regulation in humans. Targeting HDACs has emerged as a promising strategy for treating various types of cancer, including myeloma and hematologic malignancies. At present, numerous small molecule inhibitors targeting HDACs are actively being investigated in clinical trials. Despite their potential efficacy in cancer treatment, HDAC inhibitors suffer from multi-directional selectivity and preclinical resistance issues. Hence, developing novel inhibitors based on cutting-edge medicinal chemistry techniques is essential to overcome these limitations and improve clinical outcomes. This manuscript presents an extensive overview of the properties and biological functions of HDACs in cancer, provides an overview of the current state of development and limitations of clinical HDAC inhibitors, and analyzes a range of innovative medicinal chemistry techniques that are applied. These techniques include selective inhibitors, dual-target inhibitors, proteolysis targeting chimeras, and protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Jinxiao Ru
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Zijia Li
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, USA
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
2
|
Gao Y, Li F, Ni X, Yang S, Liu H, Wu X, Liu J, Ma J. Design, synthesis and biological evaluation of VEGFR-2/HDAC dual inhibitors as multitargeted antitumor agents based on fruquintinib and vorinostat. RSC Adv 2023; 13:28462-28480. [PMID: 37771923 PMCID: PMC10523135 DOI: 10.1039/d3ra05542f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Herein, a series of 4-(benzofuran-6-yloxy)quinazoline derivatives as VEGFR-2/HDAC dual inhibitors were designed and synthesized based on fruquintinib and vorinostat. Among them, compound 13 exhibited potent inhibitory activity against VEGFR-2 and HDAC1 with IC50 values of 57.83 nM and 9.82 nM, and displayed moderate to significant antiproliferative activity against MCF-7, A549, HeLa and HUVEC. The cellular mechanism studies revealed that compound 13 arrested the cell cycle at the S and G2 phases, and induced significant apoptosis in HeLa cells. Tube formation assay in HUVECs demonstrated that 13 had a significant anti-angiogenic effect. Additionally, a molecular docking study supported the initial design strategy. These results highlighted that 13 was a valuable VEGFR-2/HDAC dual inhibitor and deserved further study for cancer therapy.
Collapse
Affiliation(s)
- Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 PR China
| | - Fei Li
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine Shiyan 442008 Hubei PR China
| | - Xin Ni
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Siwang Yang
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Han Liu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Xingye Wu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Jieqing Liu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Junjie Ma
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| |
Collapse
|
3
|
Liu XJ, Zhao HC, Hou SJ, Zhang HJ, Cheng L, Yuan S, Zhang LR, Song J, Zhang SY, Chen SW. Recent development of multi-target VEGFR-2 inhibitors for the cancer therapy. Bioorg Chem 2023; 133:106425. [PMID: 36801788 DOI: 10.1016/j.bioorg.2023.106425] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Vascular epidermal growth factor receptor-2 (VEGFR-2), as an important tyrosine transmembrane protein, plays an important role in regulating endothelial cell proliferation and migration, regulating angiogenesis and other biological functions. VEGFR-2 is aberrantly expressed in many malignant tumors, and it is also related to the occurrence, development, and growth of tumors and drug resistance. Currently, there are nine VEGFR-2 targeted inhibitors approved by US.FDA for clinical use as anticancer drugs. Due to the limited clinical efficacy and potential toxicity of VEGFR inhibitors, it is necessary to develop new strategies to improve the clinical efficacy of VEGFR inhibitors. The development of multitarget therapy, especially dual-target therapy, has become a hot research field of cancer therapy, which may provide an effective strategy with higher therapeutic efficacy, pharmacokinetic advantages and low toxicity. Many groups have reported that the therapeutic effects could be improved by simultaneously inhibiting VEGFR-2 and other targets, such as EGFR, c-Met, BRAF, HDAC, etc. Therefore, VEGFR-2 inhibitors with multi-targeting capabilities have been considered to be promising and effective anticancer agents for cancer therapy. In this work, we reviewed the structure and biological functions of VEGFR-2, and summarized the drug discovery strategies, and inhibitory activities of VEGFR-2 inhibitors with multi-targeting capabilities reported in recent years. This work might provide the reference for the development of VEGFR-2 inhibitors with multi-targeting capabilities as novel anticancer agents.
Collapse
Affiliation(s)
- Xiu-Juan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hong-Cheng Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College of China Three Gorges University, Yichang 443003, China
| | - Su-Juan Hou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hao-Jie Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lei Cheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Wu Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Higgins L, Gerdes H, Cutillas PR. Principles of phosphoproteomics and applications in cancer research. Biochem J 2023; 480:403-420. [PMID: 36961757 PMCID: PMC10212522 DOI: 10.1042/bcj20220220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Phosphorylation constitutes the most common and best-studied regulatory post-translational modification in biological systems and archetypal signalling pathways driven by protein and lipid kinases are disrupted in essentially all cancer types. Thus, the study of the phosphoproteome stands to provide unique biological information on signalling pathway activity and on kinase network circuitry that is not captured by genetic or transcriptomic technologies. Here, we discuss the methods and tools used in phosphoproteomics and highlight how this technique has been used, and can be used in the future, for cancer research. Challenges still exist in mass spectrometry phosphoproteomics and in the software required to provide biological information from these datasets. Nevertheless, improvements in mass spectrometers with enhanced scan rates, separation capabilities and sensitivity, in biochemical methods for sample preparation and in computational pipelines are enabling an increasingly deep analysis of the phosphoproteome, where previous bottlenecks in data acquisition, processing and interpretation are being relieved. These powerful hardware and algorithmic innovations are not only providing exciting new mechanistic insights into tumour biology, from where new drug targets may be derived, but are also leading to the discovery of phosphoproteins as mediators of drug sensitivity and resistance and as classifiers of disease subtypes. These studies are, therefore, uncovering phosphoproteins as a new generation of disruptive biomarkers to improve personalised anti-cancer therapies.
Collapse
Affiliation(s)
- Luke Higgins
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Henry Gerdes
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Pedro R. Cutillas
- Cell Signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, U.K
- Alan Turing Institute, The British Library, London, U.K
- Digital Environment Research Institute, Queen Mary University of London, London, U.K
| |
Collapse
|
5
|
Hou Z, Meng C, Yang F, Deng Y, Han X, Liu H. Mapping Tyrosine Kinases Based on a TK Activity-Representing Peptide Library Reveals a Role for SRC in H1975 Drug Resistance. J Proteome Res 2022; 21:1105-1113. [PMID: 35293747 DOI: 10.1021/acs.jproteome.1c00980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine kinases (TKs) are prominent targets in cancer therapies, and more than 30 TK inhibitors have been approved for treatments in tumors with abnormal TK. Disappointingly, an incomplete response can occur with the long-term use of TK inhibitors, known as cancer drug resistance, which can be caused by kinome reprogramming. Hence, monitoring the status of TKs is crucial for revealing the underlying drug resistance mechanism. Here, we describe a TK activity-representing peptide library-based multiple reaction monitoring (TARPL-MRM) strategy for directly inferring TK activities. The strategy facilitated the assay of 87 human TKs through target quantification of 301 phosphorylation sites. Using this strategy, we demonstrated the heterogeneity of TK activity in different non-small cell lung cancer (NSCLC) cell lines and assessed the response of TK activities to the EGFR inhibitor AZD9291 in NSCLC cells. We found that the acquired resistance of H1975 cells to AZD9291 requires SRC activity, and inhibition of SRC plays potential roles in overcoming this resistance. In summary, our work reveals that this strategy has the potential to become a powerful tool for TK studies, clinical diagnostics, and the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Zhanwu Hou
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Caiting Meng
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Fei Yang
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yujiao Deng
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao Han
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
6
|
Urban J. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Anal Chim Acta 2022; 1199:338857. [DOI: 10.1016/j.aca.2021.338857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
|
7
|
Cordo’ V, Meijer MT, Hagelaar R, de Goeij-de Haas RR, Poort VM, Henneman AA, Piersma SR, Pham TV, Oshima K, Ferrando AA, Zaman GJR, Jimenez CR, Meijerink JPP. Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals targetable kinases and combination treatment strategies. Nat Commun 2022; 13:1048. [PMID: 35217681 PMCID: PMC8881579 DOI: 10.1038/s41467-022-28682-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
Protein kinase inhibitors are amongst the most successful cancer treatments, but targetable kinases activated by genomic abnormalities are rare in T cell acute lymphoblastic leukemia. Nevertheless, kinases can be activated in the absence of genetic defects. Thus, phosphoproteomics can provide information on pathway activation and signaling networks that offer opportunities for targeted therapy. Here, we describe a mass spectrometry-based global phosphoproteomic profiling of 11 T cell acute lymphoblastic leukemia cell lines to identify targetable kinases. We report a comprehensive dataset consisting of 21,000 phosphosites on 4,896 phosphoproteins, including 217 kinases. We identify active Src-family kinases signaling as well as active cyclin-dependent kinases. We validate putative targets for therapy ex vivo and identify potential combination treatments, such as the inhibition of the INSR/IGF-1R axis to increase the sensitivity to dasatinib treatment. Ex vivo validation of selected drug combinations using patient-derived xenografts provides a proof-of-concept for phosphoproteomics-guided design of personalized treatments.
Collapse
Affiliation(s)
- Valentina Cordo’
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mariska T. Meijer
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rico Hagelaar
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Richard R. de Goeij-de Haas
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Vera M. Poort
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alex A. Henneman
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Sander R. Piersma
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Thang V. Pham
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Koichi Oshima
- grid.239585.00000 0001 2285 2675Institute for Cancer Genetics, Columbia University Medical Center, New York, NY USA
| | - Adolfo A. Ferrando
- grid.239585.00000 0001 2285 2675Institute for Cancer Genetics, Columbia University Medical Center, New York, NY USA
| | | | - Connie R. Jimenez
- grid.12380.380000 0004 1754 9227OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Jules P. P. Meijerink
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands ,Present Address: Acerta Pharma (member of the AstraZeneca group), Oss, The Netherlands
| |
Collapse
|
8
|
Rajendran S, Swaroop SS, Roy J, Inemai E, Murugan S, Rayala SK, Venkatraman G. p21 activated kinase-1 and tamoxifen - A deadly nexus impacting breast cancer outcomes. Biochim Biophys Acta Rev Cancer 2021; 1877:188668. [PMID: 34896436 DOI: 10.1016/j.bbcan.2021.188668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
Tamoxifen is a commonly used drug in the treatment of ER + ve breast cancers since 1970. However, development of resistance towards tamoxifen limits its remarkable clinical success. In this review, we have attempted to provide a brief overview of multiple mechanism that may lead to tamoxifen resistance, with a special emphasis on the roles played by the oncogenic kinase- PAK1. Analysing the genomic data sets available in the cBioPortal, we found that PAK1 gene amplification significantly affects the Relapse Free Survival of the ER + ve breast cancer patients. While PAK1 is known to promote tamoxifen resistance by phosphorylating ERα at Ser305, existing literature suggests that PAK1 can fuel up tamoxifen resistance obliquely by phosphorylating other substrates. We have summarised some of the approaches in the mass spectrometry based proteomics, which would enable us to study the tamoxifen resistance specific phosphoproteomic landscape of PAK1. We also propose that elucidating the multiple mechanisms by which PAK1 promotes tamoxifen resistance might help us discover druggable targets and biomarkers.
Collapse
Affiliation(s)
- Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Srikanth Swamy Swaroop
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Joydeep Roy
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Ezhil Inemai
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Sowmiya Murugan
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
9
|
Wu S, Shao M, Zhang Y, Shi D. Activation of RSK2 upregulates SOX8 to promote methotrexate resistance in gestational trophoblastic neoplasia. J Transl Med 2021; 101:1494-1504. [PMID: 34373588 DOI: 10.1038/s41374-021-00651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Resistance to chemotherapy is frequently driven by aberrantly activated kinases in cancer. Herein, we characterized the global phosphoproteomic alterations associated with methotrexate (MTX) resistance in gestational trophoblastic neoplastic (GTN) cells. A total of 1111 phosphosites on 713 proteins were significantly changed, with highly elevated Ribosomal S6 Kinase 2 (RSK2) phosphorylation (pS227) observed in MTX-resistant GTN cells. Activation of RSK2 promoted cell proliferation and survival after MTX treatment in GTN cell models. Interestingly, RSK2 might play an important role in the regulation of reactive oxygen species (ROS) homeostasis, as manipulation of RSK2 activation affected ROS accumulation and SOX8 expression in GTN cells. In addition, overexpression of SOX8 partly rescued cell proliferation and survival in RSK2-depleted MTX-resistant GTN cells, suggesting that SOX8 might serve as a downstream effector of RSK2 to promote MTX resistance in GTN cells. Highly activated RSK2/SOX8 signaling was observed in MTX-resistant GTN specimens. Further, the RSK2 inhibitor BIX02565 effectively reduced SOX8 expression, induced ROS accumulation, and enhanced MTX-induced cytotoxicity in vitro and in vivo. Collectively, our findings suggested that RSK2 activation could promote MTX resistance via upregulating SOX8 and attenuating MTX-induced ROS in GTN cells, which may help to develop experimental therapeutics to treat MTX-resistant GTN.
Collapse
Affiliation(s)
- Shaobin Wu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjie Shao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Dazun Shi
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Xue X, Zhang Y, Liao Y, Sun D, Li L, Liu Y, Wang Y, Jiang W, Zhang J, Luan Y, Zhao X. Design, synthesis and biological evaluation of dual HDAC and VEGFR inhibitors as multitargeted anticancer agents. Invest New Drugs 2021; 40:10-20. [PMID: 34463890 DOI: 10.1007/s10637-021-01169-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Herein, a novel series of dual histone deacetylase (HDAC) and vascular endothelial growth factor receptor (VEGFR) inhibitors were designed, synthesized and biologically evaluated based on previously reported pazopanib-based HDAC and VEGFR dual inhibitors. Most target compounds showed significant HDAC1, HDAC6 and VEGFR2 inhibition, which contributed to their potent antiproliferative activities against multiple cancer cell lines and significant antiangiogenic potencies in both human umbilical vein endothelial cell (HUVEC) tube formation assays and rat thoracic aorta ring assays. Further HDAC selectivity evaluations indicated that hydroxamic acids 5 and 9e possessed HDAC isoform selectivity profiles similar to that of the approved HDAC inhibitor suberoylanilide hydroxamic acid(SAHA), while hydrazide12 presented an HDAC isoform selectivity profilesimilar to that of the clinical HDAC inhibitor MS-275. The VEGFR inhibition profiles of 5, 9e and 12 were similar to that of the approved VEGFR inhibitor pazopanib. The intracellular target engagements of Compounds 5 and 12 were confirmed by western blot analysis. The metabolic stabilities of 5, 9e and 12 in mouse liver microsomes were inferior to that of pazopanib. These dual HDAC and VEGFR inhibitors provide lead compounds for further structural optimization to obtainpolypharmacological anticancer agents.
Collapse
Affiliation(s)
- Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- Key Laboratory of Chest Cancer, Shandong University, Jinan, China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical of Science, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yongxiang Liao
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lina Li
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Ying Liu
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yongjie Wang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Wen Jiang
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jian Zhang
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
- Key Laboratory of Chest Cancer, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Fordham AM, Ekert PG, Fleuren EDG. Precision medicine and phosphoproteomics for the identification of novel targeted therapeutic avenues in sarcomas. Biochim Biophys Acta Rev Cancer 2021; 1876:188613. [PMID: 34390800 DOI: 10.1016/j.bbcan.2021.188613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
Rapid advances in genomic technologies have enabled in-depth interrogation of cancer genomes, revealing novel and unexpected therapeutic targets in many cancer types. Identifying actionable dependencies in the diverse and heterogeneous group of sarcomas, particularly those that occur in children or adolescents and young adults (AYAs), remains especially challenging. These patients rarely harbor actionable genomic aberrations, no targeted agent is approved, and outcomes have remained poor for the past decades. This underlines a clear need to refine our methods for target identification. Phosphoproteomics studies in sarcoma showed the power of such analyses to capture novel actionable drivers that are not accompanied by mutational events or gene amplifications. This Review makes the case that incorporating phosphoproteomic molecular profiling alongside (functional) genomics technologies can significantly expand therapeutic target identification, and pinpoint drug mechanisms of action, in pediatric and AYA sarcoma patients. We explore the utility and prospects of phosphoproteomics in personalized medicine.
Collapse
Affiliation(s)
- Ashleigh M Fordham
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
12
|
Godzieba M, Ciesielski S. Natural DNA Intercalators as Promising Therapeutics for Cancer and Infectious Diseases. Curr Cancer Drug Targets 2021; 20:19-32. [PMID: 31589125 DOI: 10.2174/1568009619666191007112516] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, the improper use of drugs, or their abuse are conducive to the increase of morbidity and mortality caused by these diseases. The imperfections of drugs currently used in therapy for these diseases and the increasing problem of drug resistance have forced a search for new substances with therapeutic potential. Throughout history, plants, animals, fungi and microorganisms have been rich sources of biologically active compounds. Even today, despite the development of chemistry and the introduction of many synthetic chemotherapeutics, a substantial part of the new compounds being tested for treatment are still of natural origin. Natural compounds exhibit a great diversity of chemical structures, and thus possess diverse mechanisms of action and molecular targets. Nucleic acids seem to be a good molecular target for substances with anticancer potential in particular, but they may also be a target for antimicrobial compounds. There are many types of interactions of small-molecule ligands with DNA. This publication focuses on the intercalation process. Intercalators are compounds that usually have planar aromatic moieties and can insert themselves between adjacent base pairs in the DNA helix. These types of interactions change the structure of DNA, leading to various types of disorders in the functioning of cells and the cell cycle. This article presents the most promising intercalators of natural origin, which have aroused interest in recent years due to their therapeutic potential.
Collapse
Affiliation(s)
- Martyna Godzieba
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| |
Collapse
|
13
|
Safabakhsh S, Panwar P, Barichello S, Sangha SS, Hanson PJ, Van Petegem F, Laksman Z. THE ROLE OF PHOSPHORYLATION IN ATRIAL FIBRILLATION: A FOCUS ON MASS SPECTROMETRY APPROACHES. Cardiovasc Res 2021; 118:1205-1217. [PMID: 33744917 DOI: 10.1093/cvr/cvab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide. It is associated with significant increases in morbidity in the form of stroke and heart failure, and a doubling in all-cause mortality. The pathophysiology of AF is incompletely understood, and this has contributed to a lack of effective treatments and disease-modifying therapies. An important cellular process that may explain how risk factors give rise to AF includes post-translational modification (PTM) of proteins. As the most commonly occurring PTM, protein phosphorylation is especially relevant. Although many methods exist for studying protein phosphorylation, a common and highly resolute technique is mass spectrometry (MS). This review will discuss recent evidence surrounding the role of protein phosphorylation in the pathogenesis of AF. MS-based technology to study phosphorylation and uses of MS in other areas of medicine such as oncology will also be presented. Based on these data, future goals and experiments will be outlined that utilize MS technology to better understand the role of phosphorylation in AF and elucidate its role in AF pathophysiology. This may ultimately allow for the development of more effective AF therapies.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pankaj Panwar
- AbCellera Biologicals Inc., Vancouver, British Columbia, Canada
| | - Scott Barichello
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarabjit S Sangha
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Paul J Hanson
- UBC Heart Lung Innovation Centre, Vancouver, British Columbia, Canada.,UBC Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Okanishi H, Ohgaki R, Okuda S, Endou H, Kanai Y. Proteomics and phosphoproteomics reveal key regulators associated with cytostatic effect of amino acid transporter LAT1 inhibitor. Cancer Sci 2020; 112:871-883. [PMID: 33264461 PMCID: PMC7893994 DOI: 10.1111/cas.14756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
L‐type amino acid transporter 1 (LAT1) is highly expressed in various cancers and plays important roles not only in the amino acid uptake necessary for cancer growth but also in cellular signaling. Recent research studies have reported anticancer effects of LAT1 inhibitors and demonstrated their potential for cancer therapy. Here, we characterized the proteome and phosphoproteome in LAT1‐inhibited cancer cells. We used JPH203, a selective LAT1 inhibitor, and performed tandem mass tag–based quantitative proteomics and phosphoproteomics on four biliary tract cancer cell lines sensitive to JPH203. Our analysis identified hundreds to thousands of differentially expressed proteins and phosphorylated sites, demonstrating the broad influence of LAT1 inhibition. Our findings showed various functional pathways altered by LAT1 inhibition, and provided possible regulators and key kinases in LAT1‐inhibited cells. Comparison of these changes among cell lines provides insights into general pathways and regulators associated with LAT1 inhibition and particularly suggests the importance of cell cycle–related pathways and kinases. Moreover, we evaluated the anticancer effects of the combinations of JPH203 with cell cycle–related kinase inhibitors and demonstrated their potential for cancer therapy. This is the first study providing the proteome‐wide scope of both protein expression and phosphorylation signaling perturbed by LAT1 inhibition in cancer cells.
Collapse
Affiliation(s)
- Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Zhu X, Li S, Xu B, Luo H. Cancer evolution: A means by which tumors evade treatment. Biomed Pharmacother 2020; 133:111016. [PMID: 33246226 DOI: 10.1016/j.biopha.2020.111016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Although various methods have been tried to study and treat cancer, the cancer remains a major challenge for human medicine today. One important reason for this is the presence of cancer evolution. Cancer evolution is a process in which tumor cells adapt to the external environment, which can suppress the human immune system's ability to recognize and attack tumors, and also reduce the reproducibility of cancer research. Among them, heterogeneity of the tumor provides intrinsic motivation for this process. Recently, with the development of related technologies such as liquid biopsy, more and more knowledge about cancer evolution has been gained and interest in this topic has also increased. Therefore, starting from the causes of tumorigenesis, this paper introduces several tumorigenesis processes and pathways, as well as treatment options for different targets.
Collapse
Affiliation(s)
- Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Shi Li
- Guangdong Key Laboratory of Urogenital Tumor Systems and Synthetic Biology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China; Shenzhen Key Laboratory of Genitourinary Tumor, Translational Medicine Institute of Shenzhen, The Second People's Hospital of Shenzhen, Shenzhen, China; College of Bioengineering, Chongqing University, Chongqing, China
| | - Bairui Xu
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China.
| |
Collapse
|
16
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
17
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
18
|
Investigation of cancer drug resistance mechanisms by phosphoproteomics. Pharmacol Res 2020; 160:105091. [PMID: 32712320 DOI: 10.1016/j.phrs.2020.105091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Cancer cell mutations can be identified by genomic and transcriptomic techniques. However, they are not sufficient to understand the full complexity of cancer heterogeneity. Analyses of proteins expressed in cancers and their modification profiles show how these mutations could be translated at the functional level. Protein phosphorylation is a major post-translational modification critical for regulating several cellular functions. The covalent addition of phosphate groups to serine, threonine, and tyrosine is catalyzed by protein kinases. Over the past years, kinases were strongly associated with cancer, thus inhibition of protein kinases emanated as novel cancer treatment. However, cancers frequently develop drug resistance. Therefore, a better understanding of drug effects on tumors is urgently needed. In this perspective, phosphoproteomics arose as advanced tool to monitor cancer therapies and to discover novel drugs. This review highlights the role of phosphoproteomics in predicting sensitivity or resistance of cancers towards tyrosine kinase inhibitors and cytotoxic drugs. It also shows the importance of phosphoproteomics in identifying biomarkers that could be applied in clinical diagnostics to predict responses to drugs.
Collapse
|
19
|
Burns J, Wilding CP, L Jones R, H Huang P. Proteomic research in sarcomas - current status and future opportunities. Semin Cancer Biol 2019; 61:56-70. [PMID: 31722230 PMCID: PMC7083238 DOI: 10.1016/j.semcancer.2019.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Sarcomas are a rare group of mesenchymal cancers comprising over 70 different histological subtypes. For the majority of these diseases, the molecular understanding of the basis of their initiation and progression remains unclear. As such, limited clinical progress in prognosis or therapeutic regimens have been made over the past few decades. Proteomics techniques are being increasingly utilised in the field of sarcoma research. Proteomic research efforts have thus far focused on histological subtype characterisation for the improvement of biological understanding, as well as for the identification of candidate diagnostic, predictive, and prognostic biomarkers for use in clinic. However, the field itself is in its infancy, and none of these proteomic research findings have been translated into the clinic. In this review, we provide a brief overview of the proteomic strategies that have been employed in sarcoma research. We evaluate key proteomic studies concerning several rare and ultra-rare sarcoma subtypes including, gastrointestinal stromal tumours, osteosarcoma, liposarcoma, leiomyosarcoma, malignant rhabdoid tumours, Ewing sarcoma, myxofibrosarcoma, and alveolar soft part sarcoma. Consequently, we illustrate how routine implementation of proteomics within sarcoma research, integration of proteomics with other molecular profiling data, and incorporation of proteomics into clinical trial studies has the potential to propel the biological and clinical understanding of this group of complex rare cancers moving forward.
Collapse
Affiliation(s)
- Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher P Wilding
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Robin L Jones
- Division of Clinical Studies, The Institute of Cancer Research, London SW3 6JB, UK; Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
20
|
Manfredi M, Brandi J, Di Carlo C, Vita Vanella V, Barberis E, Marengo E, Patrone M, Cecconi D. Mining cancer biology through bioinformatic analysis of proteomic data. Expert Rev Proteomics 2019; 16:733-747. [PMID: 31398064 DOI: 10.1080/14789450.2019.1654862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Discovery proteomics for cancer research generates complex datasets of diagnostic, prognostic, and therapeutic significance in human cancer. With the advent of high-resolution mass spectrometers, able to identify thousands of proteins in complex biological samples, only the application of bioinformatics can lead to the interpretation of data which can be relevant for cancer research. Areas covered: Here, we give an overview of the current bioinformatic tools used in cancer proteomics. Moreover, we describe their applications in cancer proteomics studies of cell lines, serum, and tissues, highlighting recent results and critically evaluating their outcomes. Expert opinion: The use of bioinformatic tools is a fundamental step in order to manage the large amount of proteins (from hundreds to thousands) that can be identified and quantified in a cancer biological samples by proteomics. To handle this challenge and obtain useful data for translational medicine, it is important the combined use of different bioinformatic tools. Moreover, a particular attention to the global experimental design, and the integration of multidisciplinary skills are essential for best setting of tool parameters and best interpretation of bioinformatics output.
Collapse
Affiliation(s)
- Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale , Novara , Italy.,Department of Translation Medicine, University of Piemonte Orientale , Novara , Italy
| | - Jessica Brandi
- Department of Biotechnology, University of Verona , Verona , Italy
| | - Claudia Di Carlo
- Department of Biotechnology, University of Verona , Verona , Italy
| | - Virginia Vita Vanella
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale , Novara , Italy.,Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria , Italy
| | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale , Novara , Italy.,Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria , Italy.,ISALIT , Novara , Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale , Novara , Italy.,Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria , Italy.,ISALIT , Novara , Italy
| | - Mauro Patrone
- Department of Sciences and Technological Innovation, University of Piemonte Orientale , Alessandria , Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona , Verona , Italy
| |
Collapse
|
21
|
Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Qu W, Sun H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J Med Chem 2019; 62:8881-8914. [PMID: 31082225 DOI: 10.1021/acs.jmedchem.9b00017] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the complexity of multifactorial diseases, single-target drugs do not always exhibit satisfactory efficacy. Recently, increasing evidence indicates that simultaneous modulation of multiple targets may improve both therapeutic safety and efficacy, compared with single-target drugs. However, few multitarget drugs are on market or in clinical trials, despite the best efforts of medicinal chemists. This article discusses the systematic establishment of target combination, lead generation, and optimization of multitarget-directed ligands (MTDLs). Moreover, we analyze some MTDLs research cases for several complex diseases in recent years and the physicochemical properties of 117 clinical multitarget drugs, with the aim to reveal the trends and insights of the potential use of MTDLs.
Collapse
Affiliation(s)
- Junting Zhou
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Xueyang Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Hongli Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China.,Jiangsu Food and Pharmaceutical Science College , Huaian 223003 , People's Republic of China
| | - Wenyuan Liu
- Department of Analytical Chemistry , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| |
Collapse
|
22
|
Lee ATJ, Jones RL, Huang PH. Pazopanib in advanced soft tissue sarcomas. Signal Transduct Target Ther 2019; 4:16. [PMID: 31123606 PMCID: PMC6522548 DOI: 10.1038/s41392-019-0049-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Pazopanib is the first and only tyrosine kinase inhibitor currently approved for the treatment of multiple histological subtypes of soft tissue sarcoma (STS). Initially developed as a small molecule inhibitor of vascular endothelial growth factor receptors, preclinical work indicates that pazopanib exerts an anticancer effect through the inhibition of both angiogenic and oncogenic signaling pathways. Following the establishment of optimal dosing and safety profiles in early phase studies and approval for the treatment of advanced renal cell carcinoma, pazopanib was investigated in STS. A landmark phase III randomized study demonstrated improved progression-free survival with pazopanib compared to that with placebo in pretreated patients with STS of various subtypes. The efficacy of pazopanib in specific STS subtypes has been further described in real-world-based case series in both mixed and subtype-specific STS cohorts. At present, there are no clinically validated predictive biomarkers for use in selecting patients with advanced STS for pazopanib therapy, limiting the clinical effectiveness and cost-effectiveness of the drug. In this review, we summarize the preclinical and clinical data for pazopanib, outline the evidence base for its effect in STS and explore reported studies that have investigated putative biomarkers.
Collapse
Affiliation(s)
- Alex T. J. Lee
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, Institute of Cancer Research, London, UK
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
23
|
An Y, Zhou L, Huang Z, Nice EC, Zhang H, Huang C. Molecular insights into cancer drug resistance from a proteomics perspective. Expert Rev Proteomics 2019; 16:413-429. [PMID: 30925852 DOI: 10.1080/14789450.2019.1601561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer. Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance. Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Yao An
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Li Zhou
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Zhao Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Edouard C Nice
- c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Canhua Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| |
Collapse
|
24
|
Zang J, Liang X, Huang Y, Jia Y, Li X, Xu W, Chou CJ, Zhang Y. Discovery of Novel Pazopanib-Based HDAC and VEGFR Dual Inhibitors Targeting Cancer Epigenetics and Angiogenesis Simultaneously. J Med Chem 2018; 61:5304-5322. [PMID: 29787262 DOI: 10.1021/acs.jmedchem.8b00384] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein a novel series of pazopanib hybrids as polypharmacological antitumor agents were developed based on the crosstalk between histone deacetylases (HDACs) and vascular endothelial growth factor (VEGF) pathway. Among them, one ortho-aminoanilide 6d and one hydroxamic acid 13f exhibited considerable total HDACs and VEGFR-2 inhibitory activities. The HDAC inhibitory activities endowed 6d and 13f with potent antiproliferative activities, which was not observed in the approved VEGFR inhibitor pazopanib. Compounds 6d and 13f possessed comparable HDAC isoform selectivity profiles to the clinical class I HDAC inhibitor MS-275 and the approved pan-HDAC inhibitor SAHA, respectively. 6d and 13f also exhibited uncompromised multiple tyrosine kinases inhibitory activities relative to pazopanib. The intracellular dual inhibition to HDAC and VEGFR of 6d and 13f was validated by Western blot analysis. In both HUVECs tube formation assay and rat thoracic aorta rings assay, 6d and 13f showed comparable antiangiogenic potencies to pazopanib. What's more, 6d possessed desirable pharmacokinetic profiles with the oral bioavailability of 72% in SD rats and considerable in vivo antitumor efficacy in a human colorectal adenocarcinoma (HT-29) xenograft model.
Collapse
Affiliation(s)
- Jie Zang
- Department of Medicinal Chemistry, School of Pharmaceutical of Science , Shandong University , Ji'nan , Shandong 250012 , P. R. China
| | - Xuewu Liang
- Department of Medicinal Chemistry, School of Pharmaceutical of Science , Shandong University , Ji'nan , Shandong 250012 , P. R. China
| | - Yongxue Huang
- Weifang Bochuang International Biological Medicinal Institute , Weifang , Shandong 261061 , P. R. China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences , Ji'nan , Shandong 250101 , P. R. China
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy , Medical University of South Carolina , Charleston , South Carolina 29425 , United States
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmaceutical of Science , Shandong University , Ji'nan , Shandong 250012 , P. R. China
| | - C James Chou
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy , Medical University of South Carolina , Charleston , South Carolina 29425 , United States
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical of Science , Shandong University , Ji'nan , Shandong 250012 , P. R. China
| |
Collapse
|
25
|
Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, Cinatl J, Huang PH, Tanos BE. Primary Cilia Mediate Diverse Kinase Inhibitor Resistance Mechanisms in Cancer. Cell Rep 2018; 23:3042-3055. [PMID: 29874589 PMCID: PMC6016080 DOI: 10.1016/j.celrep.2018.05.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/13/2017] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
Primary cilia are microtubule-based organelles that detect mechanical and chemical stimuli. Although cilia house a number of oncogenic molecules (including Smoothened, KRAS, EGFR, and PDGFR), their precise role in cancer remains unclear. We have interrogated the role of cilia in acquired and de novo resistance to a variety of kinase inhibitors, and found that, in several examples, resistant cells are distinctly characterized by an increase in the number and/or length of cilia with altered structural features. Changes in ciliation seem to be linked to differences in the molecular composition of cilia and result in enhanced Hedgehog pathway activation. Notably, manipulating cilia length via Kif7 knockdown is sufficient to confer drug resistance in drug-sensitive cells. Conversely, targeting of cilia length or integrity through genetic and pharmacological approaches overcomes kinase inhibitor resistance. Our work establishes a role for ciliogenesis and cilia length in promoting cancer drug resistance and has significant translational implications.
Collapse
Affiliation(s)
- Andrew D Jenks
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Simon Vyse
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jocelyn P Wong
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Eleftherios Kostaras
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Deborah Keller
- FILM, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | - Amelia Shoemark
- Imperial College London, London, UK Electron Microscopy Department, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Athanasios Tsalikis
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Strasse 40, 60596 Frankfurt am Main, Germany
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Barbara E Tanos
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|