1
|
Waterworth W, Balobaid A, West C. Seed longevity and genome damage. Biosci Rep 2024; 44:BSR20230809. [PMID: 38324350 PMCID: PMC11111285 DOI: 10.1042/bsr20230809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
Seeds are the mode of propagation for most plant species and form the basis of both agriculture and ecosystems. Desiccation tolerant seeds, representative of most crop species, can survive maturation drying to become metabolically quiescent. The desiccated state prolongs embryo viability and provides protection from adverse environmental conditions, including seasonal periods of drought and freezing often encountered in temperate regions. However, the capacity of the seed to germinate declines over time and culminates in the loss of seed viability. The relationship between environmental conditions (temperature and humidity) and the rate of seed deterioration (ageing) is well defined, but less is known about the biochemical and genetic factors that determine seed longevity. This review will highlight recent advances in our knowledge that provide insight into the cellular stresses and protective mechanisms that promote seed survival, with a focus on the roles of DNA repair and response mechanisms. Collectively, these pathways function to maintain the germination potential of seeds. Understanding the molecular basis of seed longevity provides important new genetic targets for the production of crops with enhanced resilience to changing climates and knowledge important for the preservation of plant germplasm in seedbanks.
Collapse
Affiliation(s)
- Wanda Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Atheer Balobaid
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Chris West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| |
Collapse
|
2
|
Ling LZ, Zhang SD. Comparative proteomic analysis between mature and germinating seeds in Paris polyphylla var. yunnanensis. PeerJ 2022; 10:e13304. [PMID: 35578673 PMCID: PMC9107301 DOI: 10.7717/peerj.13304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 01/13/2023] Open
Abstract
The long dormancy period of Paris polyphylla var. yunnanensis seeds affects the supply of this scarce plant, which is used as an important traditional Chinese medicine. Mature seeds with a globular embryo and germinating seeds with developed embryo were used to explore the mechanisms of seed germination in this species. The protein profiles between the mature and germinating seeds were compared using the isobaric tags for relative and absolute quantification (iTRAQ) approach. Of the 4,488 proteins identified, a total of 1,305 differentially expressed proteins (DEPs) were detected. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEPs indicated that metabolic pathways and the biosynthesis of secondary metabolites were the two top pathways. Additionally, phytohormone quantification shows that the abscisic acid (ABA) level significantly decreased, whereas the GA3 level dramatically increased among nine endogenous gibberellins (GAs), resulting in a significant increase of the GA3/ABA ratio in germinating seeds. The biosynthesis pathways of carotenoid as a precursor for ABA production and GA were further analyzed, and showed that proteinic expressions of the candidate genes in the two pathways did not correlate with the transcriptional abundances. However, 9-cis-epoxycarotenoid dioxygenase (NCED), a rate limited enzyme for ABA biosynthesis, was significantly decreased in mRNA levels in germinating seeds. By contrast, gibberellin 20-oxidase (GA20ox), a key enzyme GA biosynthesis, exhibited the major increase in one copy and a slight decrease in three others at the protentional level in germinating seeds. Gibberellin 2-oxidase (GA2ox), an inactivate enzyme in bioactive GAs, has the tendency to down-regulate in mRNA or at the proteinic level in germinating seeds. Altogether, these results suggested that the analyses of ABA and GA levels, the GA3/ABA ratio, and the expressional patterns of their regulatory genes may provide a novel mechanistic understanding of how phytohormones regulate seed germination in P. polyphylla var. yunnanensis.
Collapse
|
3
|
Pagano A, Zannino L, Pagano P, Doria E, Dondi D, Macovei A, Biggiogera M, Araújo SDS, Balestrazzi A. Changes in genotoxic stress response, ribogenesis and PAP (3'-phosphoadenosine 5'-phosphate) levels are associated with loss of desiccation tolerance in overprimed Medicago truncatula seeds. PLANT, CELL & ENVIRONMENT 2022; 45:1457-1473. [PMID: 35188276 PMCID: PMC9311706 DOI: 10.1111/pce.14295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 05/06/2023]
Abstract
Re-establishment of desiccation tolerance is essential for the survival of germinated seeds facing water deficit in the soil. The molecular and ultrastructural features of desiccation tolerance maintenance and loss within the nuclear compartment are not fully resolved. In the present study, the impact of desiccation-induced genotoxic stress on nucleolar ultrastructure and ribogenesis was explored along the rehydration-dehydration cycle applied in standard seed vigorization protocols. Primed and overprimed Medicago truncatula seeds, obtained through hydropriming followed by desiccation (dry-back), were analysed. In contrast to desiccation-tolerant primed seeds, overprimed seeds enter irreversible germination and do not survive dry-back. Reactive oxygen species, DNA damage and expression profiles of antioxidant/DNA Damage Response genes were measured, as main hallmarks of the seed response to desiccation stress. Nuclear ultrastructural features were also investigated. Overprimed seeds subjected to dry-back revealed altered rRNA accumulation profiles and up-regulation of genes involved in ribogenesis control. The signal molecule PAP (3'-phosphoadenosine 5'-phosphate) accumulated during dry-back only in primed seeds, as a distinctive feature of desiccation tolerance. The presented results show the molecular and ultrastructural landscapes of the seed desiccation response, including substantial changes in nuclear organization.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Paola Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Enrico Doria
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Daniele Dondi
- Department of ChemistryUniversity of PaviaPaviaItaly
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Susana de Sousa Araújo
- Association BLC3‐Technology and Innovation CampusCentre Bio R&D UnitMacedo de CavaleirosPortugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| |
Collapse
|
4
|
Peng L, Huang X, Qi M, Pritchard HW, Xue H. Mechanistic insights derived from re-establishment of desiccation tolerance in germinating xerophytic seeds: Caragana korshinskii as an example. FRONTIERS IN PLANT SCIENCE 2022; 13:1029997. [PMID: 36420023 PMCID: PMC9677110 DOI: 10.3389/fpls.2022.1029997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 05/13/2023]
Abstract
Germplasm conservation strongly depends on the desiccation tolerance (DT) of seeds. Xerophytic seeds have strong desiccation resistance, which makes them excellent models to study DT. Although some experimental strategies have been applied previously, most methods are difficult to apply to xerophytic seeds. In this review, we attempted to synthesize current strategies for the study of seed DT and provide an in-depth look at Caragana korshinskii as an example. First, we analyze congenital advantages of xerophytes in the study of seed DT. Second, we summarize several strategies used to study DT and illustrate a suitable strategy for xerophytic species. Then, based on our previous studies work with C. korshinskii, a feasible technical strategy for DT re-establishment is provided and we provide illustrate some special molecular mechanisms seen in xerophytic seeds. Finally, several steps to unveil the DT mechanism of xerophytic seeds are suggested, and three scientific questions that the field should consider are listed. We hope to optimize and utilize this strategy for more xerophytic species to more systematically decipher the physiological and molecular processes of seed DT and provide more candidate genes for molecular breeding.
Collapse
Affiliation(s)
- Long Peng
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xu Huang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Manyao Qi
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hugh W. Pritchard
- Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
- Royal Botanic Gardens, Kew, Wakehurst, West Sussex, United Kingdom
| | - Hua Xue
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Hua Xue,
| |
Collapse
|
5
|
Matilla AJ. The Orthodox Dry Seeds Are Alive: A Clear Example of Desiccation Tolerance. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010020. [PMID: 35009023 PMCID: PMC8747232 DOI: 10.3390/plants11010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
To survive in the dry state, orthodox seeds acquire desiccation tolerance. As maturation progresses, the seeds gradually acquire longevity, which is the total timespan during which the dry seeds remain viable. The desiccation-tolerance mechanism(s) allow seeds to remain dry without losing their ability to germinate. This adaptive trait has played a key role in the evolution of land plants. Understanding the mechanisms for seed survival after desiccation is one of the central goals still unsolved. That is, the cellular protection during dry state and cell repair during rewatering involves a not entirely known molecular network(s). Although desiccation tolerance is retained in seeds of higher plants, resurrection plants belonging to different plant lineages keep the ability to survive desiccation in vegetative tissue. Abscisic acid (ABA) is involved in desiccation tolerance through tight control of the synthesis of unstructured late embryogenesis abundant (LEA) proteins, heat shock thermostable proteins (sHSPs), and non-reducing oligosaccharides. During seed maturation, the progressive loss of water induces the formation of a so-called cellular "glass state". This glassy matrix consists of soluble sugars, which immobilize macromolecules offering protection to membranes and proteins. In this way, the secondary structure of proteins in dry viable seeds is very stable and remains preserved. ABA insensitive-3 (ABI3), highly conserved from bryophytes to Angiosperms, is essential for seed maturation and is the only transcription factor (TF) required for the acquisition of desiccation tolerance and its re-induction in germinated seeds. It is noteworthy that chlorophyll breakdown during the last step of seed maturation is controlled by ABI3. This update contains some current results directly related to the physiological, genetic, and molecular mechanisms involved in survival to desiccation in orthodox seeds. In other words, the mechanisms that facilitate that an orthodox dry seed is a living entity.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Wang WQ, Wang Y, Song XJ, Zhang Q, Cheng HY, Liu J, Song SQ. Proteomic Analysis of Desiccation Tolerance and Its Re-Establishment in Different Embryo Axis Tissues of Germinated Pea Seeds. J Proteome Res 2021; 20:2352-2363. [PMID: 33739120 DOI: 10.1021/acs.jproteome.0c00860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The model of loss and re-establishment of desiccation tolerance (DT) in germinated seeds has been well developed to explore the mechanisms associated with DT, but little attention has been paid to the tissue variation in this model. Herein, we investigated DT in different embryo axis tissues of germinated pea seeds and its re-establishment by poly(ethylene glycol) (PEG) treatment and then employed an iTRAQ-based proteomic method to explore the underlying mechanisms. DT varied among the four embryo axis parts of germinated seeds: epicotyl > hypocotyl-E (hypocotyl part attached to the epicotyl) > hypocotyl-R (hypocotyl part attached to the radicle) > radicle. Meanwhile, PEG treatment of germinated seeds resulted in a differential extent of DT re-establishment in these tissues. Proteins involved in detoxification and stress response were enriched in desiccation-tolerant hypocotyls-E and epicotyls of germinated seeds, respectively. Upon rehydration, proteome change during dehydration was recovered in the hypocotyls-E but not in the radicles. PEG treatment of germinated seeds led to numerous changes in proteins, in abundance in desiccation-sensitive radicles and hypocotyls-R, of which many accumulated in the hypocotyls-E and epicotyls before the treatment. We hypothesized that accumulation of groups 1 and 5 LEA proteins and proteins related to detoxification, ABA, ethylene, and calcium signaling contributed mainly to the variation of DT in different tissues and its re-establishment.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Yue Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hong-Yan Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Song-Quan Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Functional characterization of an unobtrusive protein, CkMT4, in re-establishing desiccation tolerance in germinating seeds. Int J Biol Macromol 2021; 173:180-192. [PMID: 33482205 DOI: 10.1016/j.ijbiomac.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/02/2023]
Abstract
Desiccation tolerance (DT) is gradually lost during seed germination, while it can be re-established by pre-treatment with polyethylene glycol (PEG) and/or abscisic acid (ABA). Increasing knowledge is available on several stress-related proteins in DT re-establishment in herb seeds, but limited information exists on novel proteins in wood seeds. This study aimed to investigate the role of metallothionein CkMT4, a protein species with the highest fold increase in abundance in Caragana korshinskii seeds on PEG treatment. The fluctuation in mRNA levels of CkMT4 during seed development was consistent with the changes in DT, and the expression of CkMT4 could be up-regulated by ABA. Besides metal-binding capacity, CkMT4 might supply Cu2+/Zn2+ to superoxide dismutase (SOD) under high redox potential provided by PEG treatment for excess reactive oxygen species (ROS) scavenging. The overexpression of CkMT4 in yeast results in enhanced oxidation resistance. Experimentally, this study demonstrated the overexpression of CkMT4 in Arabidopsis seeds benefited the re-establishment of DT and enhanced the activity of SOD. On the whole, these findings suggested that CkMT4 facilitated the re-establishment of DT in C. korshinskii seeds mainly through diminishing excess ROS, which put the mechanism underlying the re-establishment of DT in xerophytic wood seeds into a new perspective.
Collapse
|
8
|
Wojciechowska N, Alipour S, Stolarska E, Bilska K, Rey P, Kalemba EM. Involvement of the MetO/Msr System in Two Acer Species That Display Contrasting Characteristics during Germination. Int J Mol Sci 2020; 21:E9197. [PMID: 33276642 PMCID: PMC7730483 DOI: 10.3390/ijms21239197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
The levels of methionine sulfoxide (MetO) and the abundances of methionine sulfoxide reductases (Msrs) were reported as important for the desiccation tolerance of Acer seeds. To determine whether the MetO/Msrs system is related to reactive oxygen species (ROS) and involved in the regulation of germination in orthodox and recalcitrant seeds, Norway maple and sycamore were investigated. Changes in water content, MetO content, the abundance of MsrB1 and MsrB2 in relation to ROS content and the activity of reductases depending on nicotinamide adenine dinucleotides were monitored. Acer seeds differed in germination speed-substantially higher in sycamore-hydration dynamics, levels of hydrogen peroxide, superoxide anion radicals (O2•-) and hydroxyl radicals (•OH), which exhibited peaks at different stages of germination. The MetO level dynamically changed, particularly in sycamore embryonic axes, where it was positively correlated with the levels of O2•- and the abundance of MsrB1 and negatively with the levels of •OH and the abundance of MsrB2. The MsrB2 abundance increased upon sycamore germination; in contrast, it markedly decreased in Norway maple. We propose that the ROS-MetO-Msr redox system, allowing balanced Met redox homeostasis, participates in the germination process in sycamore, which is characterized by a much higher speed compared to Norway maple.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Ewelina Stolarska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| | - Pascal Rey
- Plant Protective Proteins (PPV) Team, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), Aix Marseille University (AMU), 13108 Saint Paul-Lez-Durance, France;
| | - Ewa M. Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (N.W.); (S.A.); (E.S.); (K.B.)
| |
Collapse
|
9
|
Kalemba EM, Stolarska E. Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants. Int J Mol Sci 2019; 20:ijms20061309. [PMID: 30875880 PMCID: PMC6471524 DOI: 10.3390/ijms20061309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidation of methionine to methionine sulfoxide is a type of posttranslational modification reversed by methionine sulfoxide reductases (Msrs), which present an exceptionally high number of gene copies in plants. The side-form general antioxidant function-specific role of each Msr isoform has not been fully studied. Thirty homologous genes of Msr type A (MsrA) and type B (MsrB) that originate from the genomes of Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa were analyzed in silico. From 109 to 201 transcription factors and responsive elements were predicted for each gene. Among the species, 220 and 190 common transcription factors and responsive elements were detected for the MsrA and MsrB isoforms, respectively. In a comparison of 14 MsrA and 16 MsrB genes, 424 transcription factors and responsive elements were reported in both types of genes, with almost ten times fewer unique elements. The transcription factors mainly comprised plant growth and development regulators, transcription factors important in stress responses with significant overrepresentation of the myeloblastosis viral oncogene homolog (MYB) and no apical meristem, Arabidopsis transcription activation factor and cup-shaped cotyledon (NAC) families and responsive elements sensitive to ethylene, jasmonate, sugar, and prolamine. Gene Ontology term-based functional classification revealed that cellular, metabolic, and developmental process terms and the response to stimulus term dominated in the biological process category. Available experimental transcriptomic and proteomic data, in combination with a set of predictions, gave coherent results validating this research. Thus, new manners Msr gene expression regulation, as well as new putative roles of Msrs, are proposed.
Collapse
Affiliation(s)
- Ewa M Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Ewelina Stolarska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| |
Collapse
|
10
|
Ma D, Liu Q, Zhang M, Feng J, Li X, Zhou Y, Wang X. iTRAQ-based quantitative proteomics analysis of the spleen reveals innate immunity and cell death pathways associated with heat stress in broilers (Gallus gallus). J Proteomics 2019; 196:11-21. [DOI: 10.1016/j.jprot.2019.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
|