1
|
Wang MJ, Gao C, Huang X, Wang M, Zhang S, Gao XP, Zhong CQ, Li LY. Establishing Pancreatic Cancer Organoids from EUS-Guided Fine-Needle Biopsy Specimens. Cancers (Basel) 2025; 17:692. [PMID: 40002285 PMCID: PMC11852484 DOI: 10.3390/cancers17040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic cancer is a highly malignant digestive system tumor characterized by covert onset and rapid progression, with a 5-year survival rate of less than 10%. Most patients have already reached an advanced or metastatic stage at the time of diagnosis. Therefore, it is particularly important to study the occurrence, development, and drug resistance mechanisms of pancreatic cancer. In recent years, the development of 3D tumor cell culture technology has provided new avenues for pancreatic cancer research. Patient-derived organoids (PDOs) are micro-organ structures that are obtained directly from the patient's body and rapidly expand in vitro. PDOs have the ability to self-renew and self-organize and retain the genetic heterogeneity and molecular characteristics of the original tumor. However, the use of organoids is limited because most patients with pancreatic ductal adenocarcinoma (PDAC) are inoperable. Endoscopic ultrasound-guided fine-needle aspiration/biopsy (EUS-FNA/FNB) is an important method for obtaining tissue samples from non-surgical pancreatic cancer patients. This article reviews the factors that affect the formation of pancreatic cancer organoids using EUS-FNA/FNB. High-quality samples, sterile operations, and optimized culture media are key to successfully generating organoids. Additionally, individual patient differences and disease stages can impact the formation of organoids. Pancreatic cancer organoids constructed using EUS-FNA/FNB have significant potential, suggesting new approaches for research and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lian-Yong Li
- Department of Gastroenterology, The Ninth Medical Center of Chinese PLA General Hospital, Beijing 100101, China; (M.-J.W.); (C.G.); (X.H.); (M.W.); (S.Z.); (X.-P.G.); (C.-Q.Z.)
| |
Collapse
|
2
|
Beutel AK, Ekizce M, Ettrich TJ, Seufferlein T, Lindenmayer J, Gout J, Kleger A. Organoid-based precision medicine in pancreatic cancer. United European Gastroenterol J 2025; 13:21-33. [PMID: 39540683 DOI: 10.1002/ueg2.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) ranks among the leading causes of cancer-related deaths worldwide. Despite advances in precision oncology in other malignancies, treatment of PDAC still largely relies on conventional chemotherapy. Given the dismal prognosis and heterogeneity in PDAC, there is an urgent need for personalized therapeutic strategies to improve treatment response. Organoids, generated from patients' tumor tissue, have emerged as a powerful tool in cancer research. These three-dimensional models faithfully recapitulate the morphological and genetic features of the parental tumor and retain patient-specific heterogeneity. This review summarizes existing precision oncology approaches in PDAC, explores current applications and limitations of organoid cultures in personalized medicine, details preclinical studies correlating in vitro organoid prediction and patient treatment response, and provides an overview of ongoing organoid-based clinical trials.
Collapse
Affiliation(s)
- Alica K Beutel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Menar Ekizce
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Thomas J Ettrich
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Johann Gout
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Core Facility Organoids, Medical Faculty of Ulm University, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
3
|
Wang X, Zhu J, Li L, Zhao Q, Huang Y, Wen C, Chen D, Wu L. Utility of patient-derived xenografts to evaluate drug sensitivity and select optimal treatments for individual non-small-cell lung cancer patients. Mol Med 2024; 30:209. [PMID: 39528952 PMCID: PMC11556205 DOI: 10.1186/s10020-024-00934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) is currently considered a preferred preclinical model to evaluate drug sensitivity, explore drug resistance mechanisms, and select individualized treatment regimens. METHODS Histopathological examination, immunohistochemistry and whole-exome sequencing confirmed similarity between our PDX tumors and primary tumors in terms of morphology and genetic characteristics. The drug reactivity of the PDX tumor was validated in vivo. The mechanisms of acquired resistance to Osimertinib PDX tumors were investigated by WES and WB. RESULTS We successfully established 13 NSCLC-PDXs derived from 62 patients, including eight adenocarcinomas, four squamous-cell carcinoma, and one large-cell neuroendocrine carcinoma. Histological subtype and clinical stage were significant factors affecting the successful PDXs establishment. The treatment responses to conventional chemotherapy in PDXs were entirely consistent with that of their corresponding patients. According to the genetic status of tumors, more appropriate targeted agents were selected in PDXs for their corresponding patients as alternative treatment options. In addition, a PDX model with acquired resistance to osimertinib was induced, and the overactivation of RAS mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathway caused by the dual-specificity phosphatase 6 (DUSP6) M62I mutation was found to play a key role in the development of osimertinib resistance. Trametinib, a specific inhibitor of the MAPK-ERK pathway significantly slowed down the tumor growth in osimertinib-resistant PDX models, providing an alternative treatment in patients after osimertinib failure.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ju Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lingling Li
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qilin Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yutang Huang
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chunjie Wen
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lanxiang Wu
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Zhang Q, Zhang M. Recent advances in lung cancer organoid (tumoroid) research (Review). Exp Ther Med 2024; 28:383. [PMID: 39161616 PMCID: PMC11332118 DOI: 10.3892/etm.2024.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 08/21/2024] Open
Abstract
Lung cancer is the most critical type of malignant tumor that threatens human health. Traditional preclinical models have certain defects; for example, they cannot accurately reflect the characteristics of lung cancer and their development is costly and time-consuming. Through self-organization, cancer stem cells (CSCs) generate cancer organoids that have a structure similar to that of lung cancer tissues, overcoming to some extent the aforementioned challenges, thus enabling them to have broader application prospects. Lung cancer organoid (LCO) development methods can be divided into three broad categories based on the source of cells, which include cell lines, patient-derived xenografts and patient tumor tissue/pleural effusion. There are 17 different methods that have been described for the development of LCOs. These methods can be further merged into six categories based on the source of cells, the pre-treatment method used, the composition of the medium and the culture scaffold. These categories are: i) CSCs induced by defined transcription factors; ii) suspension culture; iii) relative optimal culture medium; iv) suboptimal culture medium; v) mechanical digestion and suboptimal culture medium; and vi) hydrogel scaffold. In the current review, the advantages and disadvantages of each of the aforementioned methods are summarized, and references for supporting studies are cited.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Mingyang Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Fuchs V, Sobarzo A, Msamra M, Kezerle Y, Linde L, Sevillya G, Anoze A, Refaely Y, Cohen AY, Melamed I, Azriel A, Shoukrun R, Raviv Y, Porgador A, Peled N, Roisman LC. Personalizing non-small cell lung cancer treatment through patient-derived xenograft models: preclinical and clinical factors for consideration. Clin Transl Oncol 2024; 26:2227-2239. [PMID: 38553659 PMCID: PMC11333550 DOI: 10.1007/s12094-024-03450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/05/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE In the pursuit of creating personalized and more effective treatment strategies for lung cancer patients, Patient-Derived Xenografts (PDXs) have been introduced as preclinical platforms that can recapitulate the specific patient's tumor in an in vivo model. We investigated how well PDX models can preserve the tumor's clinical and molecular characteristics across different generations. METHODS A Non-Small Cell Lung Cancer (NSCLC) PDX model was established in NSG-SGM3 mice and clinical and preclinical factors were assessed throughout subsequent passages. Our cohort consisted of 40 NSCLC patients, which were used to create 20 patient-specific PDX models in NSG-SGM3 mice. Histopathological staining and Whole Exome Sequencing (WES) analysis were preformed to understand tumor heterogeneity throughout serial passages. RESULTS The main factors that contributed to the growth of the engrafted PDX in mice were a higher grade or stage of disease, in contrast to the long duration of chemotherapy treatment, which was negatively correlated with PDX propagation. Successful PDX growth was also linked to poorer prognosis and overall survival, while growth pattern variability was affected by the tumor aggressiveness, primarily affecting the first passage. Pathology analysis showed preservation of the histological type and grade; however, WES analysis revealed genomic instability in advanced passages, leading to the inconsistencies in clinically relevant alterations between the PDXs and biopsies. CONCLUSIONS Our study highlights the impact of multiple clinical and preclinical factors on the engraftment success, growth kinetics, and tumor stability of patient-specific NSCLC PDXs, and underscores the importance of considering these factors when guiding and evaluating prolonged personalized treatment studies for NSCLC patients in these models, as well as signaling the imperative for additional investigations to determine the full clinical potential of this technique.
Collapse
Affiliation(s)
- Vered Fuchs
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ariel Sobarzo
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maha Msamra
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yarden Kezerle
- Institute of Pathology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Liat Linde
- Biomedical Core Facility, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gur Sevillya
- Biomedical Core Facility, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alaa Anoze
- The Oncology Institute, Helmsley Cancer Center, Precision Oncology and Innovation, Shaare Zedek Medical Center, 12, Shmuel Beit St, 9103102, Jerusalem, Israel
| | - Yael Refaely
- Department of Cardiothoracic Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | | | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Beer Sheva, Israel
| | - Amit Azriel
- Department of Neurosurgery, Soroka University Medical Center, Beer Sheva, Israel
| | - Rami Shoukrun
- Department of Ears, Nose & Throat, Head & Neck Surgery, Soroka University Medical Center, Beer Sheva, Israel
| | - Yael Raviv
- Pulmonary Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Peled
- The Oncology Institute, Helmsley Cancer Center, Precision Oncology and Innovation, Shaare Zedek Medical Center, 12, Shmuel Beit St, 9103102, Jerusalem, Israel.
| | - Laila Catalina Roisman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- The Oncology Institute, Helmsley Cancer Center, Precision Oncology and Innovation, Shaare Zedek Medical Center, 12, Shmuel Beit St, 9103102, Jerusalem, Israel.
| |
Collapse
|
6
|
Lafazanis K, Begas E, Papapostolou I, Iatrou H, Sakellaridis N, Vlassopoulos D, Dimas K. Development and Validation of a Simple and Reliable HPLC-UV Method for Determining Gemcitabine Levels: Application in Pharmacokinetic Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:864. [PMID: 38929481 PMCID: PMC11205493 DOI: 10.3390/medicina60060864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Gemcitabine has been used to treat various solid cancers, including, since 1997, metastatic pancreatic cancer. Here, we developed an HPLC-UV method to determine serum gemcitabine levels and use it in pharmacokinetic studies. Materials and Methods: The analysis was performed after a single protein precipitation step on a reversed-phase column, isocratically eluted with sodium phosphate buffer and methanol. For the pharmacokinetic study, NOD/SCID mice received a single dose of gemcitabine at 100 mg/kg by either subcutaneous (SC) or intraperitoneal (IP) administration. Blood samples were collected at 5, 15, and 30 min and 1, 2, 4, and 6 h after the administration of gemcitabine for further analysis. Results: The duration of the analysis was ~12.5 min. The calibration curve was linear (r2 = 0.999) over the range of 1-400 μM. The mean recovery of GEM was 96.53% and the limit of detection was 0.166 μΜ. T1/2, Tmax, Cmax, AUC0-t, and clearance were 64.49 min, 5.00 min, 264.88 μmol/L, 9351.95 μmol/L*min, and 0.0103(mg)/(μmol/L)/min, respectively, for the SC administration. The corresponding values for the IP administration were 59.34 min, 5.00 min, 300.73 μmol/L, 8981.35 μmol/L*min and 0.0108(mg)/(μmol/L)/min (not statistically different from the SC administration). Conclusions: A simple, valid, sensitive, and inexpensive method for the measurement of gemcitabine in serum has been developed. This method may be useful for monitoring gemcitabine levels in cancer patients as part of therapeutic drug monitoring.
Collapse
Affiliation(s)
- Konstantinos Lafazanis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.L.); (E.B.); (I.P.); (N.S.)
| | - Elias Begas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.L.); (E.B.); (I.P.); (N.S.)
| | - Irida Papapostolou
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.L.); (E.B.); (I.P.); (N.S.)
| | - Hermis Iatrou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.L.); (E.B.); (I.P.); (N.S.)
| | - Dimitrios Vlassopoulos
- FORTH, Institute for Electronic Structure and Laser, 71110 Heraklion, Greece;
- Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.L.); (E.B.); (I.P.); (N.S.)
| |
Collapse
|
7
|
Hernández Guerrero T, Baños N, del Puerto Nevado L, Mahillo-Fernandez I, Doger De-Speville B, Calvo E, Wick M, García-Foncillas J, Moreno V. Patient Characteristics Associated with Growth of Patient-Derived Tumor Implants in Mice (Patient-Derived Xenografts). Cancers (Basel) 2023; 15:5402. [PMID: 38001663 PMCID: PMC10670531 DOI: 10.3390/cancers15225402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Background: patient-derived xenografts (PDXs) have defined the field of translational cancer research in recent years, becoming one of the most-used tools in early drug development. The process of establishing cancer models in mice has turned out to be challenging, since little research focuses on evaluating which factors impact engraftment success. We sought to determine the clinical, pathological, or molecular factors which may predict better engraftment rates in PDXs. Methods: between March 2017 and January 2021, tumor samples obtained from patients with primary or metastatic cancer were implanted into athymic nude mice. A full comprehensive evaluation of baseline factors associated with the patients and patients' tumors was performed, with the goal of potentially identifying predictive markers of engraftment. We focused on clinical (patient factors) pathological (patients' tumor samples) and molecular (patients' tumor samples) characteristics, analyzed either by immunohistochemistry (IHC) or next-generation sequencing (NGS), which were associated with the likelihood of final engraftment, as well as with tumor growth rates in xenografts. Results: a total of 585 tumor samples were collected and implanted. Twenty-one failed to engraft, due to lack of malignant cells. Of 564 tumor-positive samples, 187 (33.2%) grew at time of analysis. The study was able to find correlation and predictive value for engraftment for the following: the use of systemic antibiotics by the patient within 2 weeks of sampling (38.1% (72/189) antibiotics- group vs. 30.7% (115/375) no-antibiotics) (p = 0.048), and the administration of systemic steroids to the patients within 2 weeks of sampling (41.5% (34/48) steroids vs. 31.7% (153/329), no-steroids) (p = 0.049). Regarding patient's baseline tests, we found certain markers could help predict final engraftment success: for lactate dehydrogenase (LDH) levels, 34.1% (140/411) of tumors derived from patients with baseline blood LDH levels above the upper limit of normality (ULN) achieved growth, against 30.7% (47/153) with normal LDH (p = 0.047). Histological tumor characteristics, such as grade of differentiation, were also correlated. Grade 1: 25.4% (47/187), grade 2: 34.8% (65/187) and grade 3: 40.1% (75/187) tumors achieved successful growth (p = 0.043), suggesting the higher the grade, the higher the likelihood of success. Similarly, higher ki67 levels were also correlated with better engraftment rates: low (Ki67 < 15%): 8.9% (9/45) achieved growth vs. high (Ki67 ≥ 15%): 31% (35/113) (p: 0.002). Other markers of aggressiveness such as the presence of lymphovascular invasion in tumor sample of origin was also predictive: 42.2% (97/230) with lymphovascular vs. 26.9% (90/334) of samples with no invasion (p = 0.0001). From the molecular standpoint, mismatch-repair-deficient (MMRd) tumors showed better engraftment rates: 62.1% (18/29) achieved growth vs. 40.8% (75/184) of proficient tumors (p = 0.026). A total of 84 PDX were breast models, among which 57.9% (11/19) ER-negative models grew, vs. 15.4% (10/65) of ER-positive models (p = 0.0001), also consonant with ER-negative tumors being more aggressive. BRAFmut cancers are more likely to achieve engraftment during the development of PDX models. Lastly, tumor growth rates during first passages can help establish a cutoff point for the decision-making process during PDX development, since the higher the tumor grades, the higher the likelihood of success. Conclusions: tumors with higher grade and Ki67 protein expression, lymphovascular and/or perineural invasion, with dMMR and are negative for ER expression have a higher probability of achieving growth in the process of PDX development. The use of steroids and/or antibiotics in the patient prior to sampling can also impact the likelihood of success in PDX development. Lastly, establishing a cutoff point for tumor growth rates could guide the decision-making process during PDX development.
Collapse
Affiliation(s)
| | - Natalia Baños
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| | | | - Ignacio Mahillo-Fernandez
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
- Translational Oncology Division, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain;
| | - Bernard Doger De-Speville
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| | - Emiliano Calvo
- START Madrid—CIOCC HM Sanchinarro, C. de Oña, 10, 28050 Madrid, Spain;
| | - Michael Wick
- XENOStart START San Antonio, 4383 Medical Dr, San Antonio, TX 78229, USA;
| | - Jesús García-Foncillas
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
- Translational Oncology Division, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain;
| | - Victor Moreno
- START Madrid—Fundación Jimenez Díaz University Hospital, Avenida Reyes Católicos 2, 28040 Madrid, Spain (I.M.-F.); (B.D.D.-S.); (J.G.-F.); (V.M.)
| |
Collapse
|
8
|
Liang F, Xu H, Cheng H, Zhao Y, Zhang J. Patient-derived tumor models: a suitable tool for preclinical studies on esophageal cancer. Cancer Gene Ther 2023; 30:1443-1455. [PMID: 37537209 DOI: 10.1038/s41417-023-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Esophageal cancer (EC) is the tenth most common cancer worldwide and has high morbidity and mortality. Its main subtypes include esophageal squamous cell carcinoma and esophageal adenocarcinoma, which are usually diagnosed during their advanced stages. The biological defects and inability of preclinical models to summarize completely the etiology of multiple factors, the complexity of the tumor microenvironment, and the genetic heterogeneity of tumors severely limit the clinical treatment of EC. Patient-derived models of EC not only retain the tissue structure, cell morphology, and differentiation characteristics of the original tumor, they also retain tumor heterogeneity. Therefore, compared with other preclinical models, they can better predict the efficacy of candidate drugs, explore novel biomarkers, combine with clinical trials, and effectively improve patient prognosis. This review discusses the methods and animals used to establish patient-derived models and genetically engineered mouse models, especially patient-derived xenograft models. It also discusses their advantages, applications, and limitations as preclinical experimental research tools to provide an important reference for the precise personalized treatment of EC and improve the prognosis of patients.
Collapse
Affiliation(s)
- Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongyan Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongwei Cheng
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yabo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Gong M, Meng H, Tan D, Li P, Qin J, An Q, Shi C, An J. Establishment of organoid models for pancreatic ductal adenocarcinoma and screening of individualized therapy strategy. Animal Model Exp Med 2023; 6:409-418. [PMID: 37890865 PMCID: PMC10614126 DOI: 10.1002/ame2.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgical resection and receive effective chemotherapy have the best chance for long-term survival. Unfortunately, because of the heterogeneity of pancreatic cancer, it is difficult to find a personalized treatment strategy for patients. Organoids are ideal preclinical models for personalized medicine. Therefore, we explore the cultivation conditions and construction methods of PDAC organoid models to screen the individualized therapy strategy. METHODS Fresh PDAC tissues from surgical resection were collected and digested with digestive enzymes; then the tumor cells were embedded in Matrigel with a suitable medium to establish the PDAC organoid models. The genetic stability of the organoids was analyzed using whole exon sequencing; hematoxylin and eosin staining and immunohistochemistry of organoids were performed to analyze their consistency with the pathological morphology of the patient's tumor tissue; After 2 days of organoid culture, we selected four commonly used clinical chemotherapy drugs for single or combined treatment to analyze drug sensitivity. RESULTS Two cases of PDAC organoid models were successfully established, and the results of their pathological characteristics and exome sequencing were consistent with those of the patient's tumor tissue. Both PDAC organoids showed more sensitivity to gemcitabine and cisplatin, and the combined treatment was more effective than monotherapy. CONCLUSION Both organoids better retained the pathological characteristics, genomic stability, and heterogeneity with the original tumor. Individual PDAC organoids exhibited different sensitivities to the same drugs. Thus, this study provided ideal experimental models for screening individualized therapy strategy for patients with PDAC.
Collapse
Affiliation(s)
- Miaomiao Gong
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
- School of Basic Medical SciencesMedical College of Yan'an UniversityYananChina
| | - Han Meng
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Peng Li
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
- Animal Experiment CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Jiaze An
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
10
|
Sereti E, Papapostolou I, Dimas K. Pancreatic Cancer Organoids: An Emerging Platform for Precision Medicine? Biomedicines 2023; 11:890. [PMID: 36979869 PMCID: PMC10046065 DOI: 10.3390/biomedicines11030890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/17/2023] Open
Abstract
Despite recent therapeutic advances, pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies, with remarkable resistance to treatment, poor prognosis, and poor clinical outcome. More efficient therapeutic approaches are urgently needed to improve patients' survival. Recently, the development of organoid culture systems has gained substantial attention as an emerging preclinical research model. PDAC organoids have been developed to study pancreatic cancer biology, progression, and treatment response, filling the translational gap between in vitro and in vivo models. Here, we review the rapidly evolving field of PDAC organoids and their potential as powerful preclinical tools that could pave the way towards precision medicine for pancreatic cancer.
Collapse
Affiliation(s)
- Evangelia Sereti
- Department of Translational Medicine, Lund University, 22363 Lund, Sweden
| | - Irida Papapostolou
- Department of Biochemistry and Molecular Medicine, 3012 Bern, Switzerland
| | - Konstantinos Dimas
- Department of Pharmacology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
11
|
Ciardiello A, Altierix S, Ballarini F, Bocci V, Bortolussi S, Cansolino L, Carlotti D, Ciocca M, Faccini R, Facoetti A, Ferrari C, Ficcadenti L, Furfaro E, Giagu S, Iacoangeli F, Macioce G, Mancini-Terracciano C, Messina A, Milazzo L, Pacifico S, Piccolella S, Postuma I, Rotili D, Vercesi V, Voena C, Vulcano F, Capuani S. Multimodal evaluation of 19F-BPA internalization in pancreatic cancer cells for boron capture and proton therapy potential applications. Phys Med 2022; 94:75-84. [PMID: 34999515 DOI: 10.1016/j.ejmp.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE One of the obstacles to the application of Boron Neutron Capture Therapy (BNCT) and Proton Boron Fusion Therapy (PBFT) concerns the measurement of borated carriers' biodistribution. The objective of the present study was to evaluate the in vitro internalization of the 19F-labelled p-boronophenylalanine (19F-BPA) in the human cancer pancreatic cell line (PANC-1) for the potential application of BNCT and PBFT in pancreatic cancer. The 19F-BPA carrier has the advantage that its bio-distribution may be monitored in vivo using 19F-Nuclear Magnetic Resonance (19F NMR). MATERIALS AND METHODS The 19F-BPA internalization in PANC-1 cells was evaluated using three independent techniques on cellular samples left in contact with growing medium enriched with 13.6 mM 19F-BPA corresponding to a 11B concentration of 120 ppm: neutron autoradiography, which quantifies boron; liquid chromatography hyphenated to tandem mass spectrometry and UV-Diode Array Detection (UV-DAD), which quantifies 19F-BPA molecule; and 19F NMR spectroscopy, which detects fluorine nuclei. RESULTS Our studies suggested that 19F-BPA is internalized by PANC-1 cells. The three methods provided consistent results of about 50% internalization fraction at 120 ppm of 11B. Small variations (less than 15%) in internalization fraction are mainly dependent on the proliferation state of the cells. CONCLUSIONS The ability of 19F NMR spectroscopy to study 19F-BPA internalization was validated by well-established independent techniques. The multimodal approach we used suggests 19F-BPA as a promising BNCT/PBFT carrier for the treatment of pancreatic cancer. Since the quantification is performed at doses useful for BNCT/PBFT, 19F NMR can be envisaged to monitor 19F-BPA bio-distribution during the therapy.
Collapse
Affiliation(s)
- Andrea Ciardiello
- Sapienza University, Physics Department, pl.e Aldo Moro 2, 00185 Rome, Italy; INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy
| | - Saverio Altierix
- Pavia University, Physics Department, via A. Bassi 6, 27100 Pavia, Italy; INFN, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy
| | - Francesca Ballarini
- Pavia University, Physics Department, via A. Bassi 6, 27100 Pavia, Italy; INFN, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy
| | - Valerio Bocci
- INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy
| | - Silva Bortolussi
- Pavia University, Physics Department, via A. Bassi 6, 27100 Pavia, Italy; INFN, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy
| | - Laura Cansolino
- INFN, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy; Pavia University, Laboratory of Experimental Surgery, Clinical, Surgical, Diagnostic, Pediatric Science Department, via Ferrata, 27100 Pavia, Italy
| | - Daniele Carlotti
- INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mario Ciocca
- INFN, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy; National Center of Oncological Hadrontherapy, CNAO, via Campeggi 53, 27100 Pavia, Italy
| | - Riccardo Faccini
- Sapienza University, Physics Department, pl.e Aldo Moro 2, 00185 Rome, Italy; INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy
| | - Angelica Facoetti
- INFN, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy; National Center of Oncological Hadrontherapy, CNAO, via Campeggi 53, 27100 Pavia, Italy
| | - Cinzia Ferrari
- INFN, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy; Pavia University, Laboratory of Experimental Surgery, Clinical, Surgical, Diagnostic, Pediatric Science Department, via Ferrata, 27100 Pavia, Italy
| | | | - Emiliano Furfaro
- Sapienza University, Physics Department, pl.e Aldo Moro 2, 00185 Rome, Italy
| | - Stefano Giagu
- Sapienza University, Physics Department, pl.e Aldo Moro 2, 00185 Rome, Italy; INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy
| | | | - Giampiero Macioce
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Carlo Mancini-Terracciano
- Sapienza University, Physics Department, pl.e Aldo Moro 2, 00185 Rome, Italy; INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy
| | - Andrea Messina
- Sapienza University, Physics Department, pl.e Aldo Moro 2, 00185 Rome, Italy; INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Severina Pacifico
- University of Campania "Luigi Vanvitelli", Environmental, Biological and Pharmaceutical Sciences and Technologies Department, Via Vivaldi 43, 81100 Caserta, Italy; INFN, Sezione di Napoli, Strada Comunale Cinthia, 80126 Napoli, (Italy)
| | - Simona Piccolella
- University of Campania "Luigi Vanvitelli", Environmental, Biological and Pharmaceutical Sciences and Technologies Department, Via Vivaldi 43, 81100 Caserta, Italy; INFN, Sezione di Napoli, Strada Comunale Cinthia, 80126 Napoli, (Italy)
| | - Ian Postuma
- INFN, Sezione di Pavia, via A. Bassi 6, 27100 Pavia, Italy
| | - Dante Rotili
- Sapienza University, Department of Chemistry and Technologies of Drugs, P.le A. Moro 2, 00185 Rome, Italy
| | | | - Cecilia Voena
- INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy.
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Silvia Capuani
- INFN, Sezione di Roma, pl.e Aldo Moro 2, 00185 Rome, Italy; CNR ISC c/o Sapienza University Physics Department, P.le A.Moro 2, 00185 Rome, Italy; Centro Fermi - Museo Storico Della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, Rome 00184, Italy
| |
Collapse
|
12
|
Hoare O, Fraunhoffer N, Elkaoutari A, Gayet O, Bigonnet M, Roques J, Nicolle R, McGuckin C, Forraz N, Sohier E, Tonon L, Wajda P, Boyault S, Attignon V, Tabone-Eglinger S, Barbier S, Mignard C, Duchamp O, Iovanna J, Dusetti NJ. Exploring the Complementarity of Pancreatic Ductal Adenocarcinoma Preclinical Models. Cancers (Basel) 2021; 13:cancers13102473. [PMID: 34069519 PMCID: PMC8161239 DOI: 10.3390/cancers13102473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) patient care lacks well-established molecular characterization of the tumors, which would allow for better-personalized treatment selection if improved. To overcome this problem, preclinical models are frequent-ly adopted tools used to elucidate the molecular characterization of PDAC tumors. Unfortunately, the vast majority of studies using these preclinical models fail when transferred to patients despite initially promising results. This study presents for the first time a comparison between three preclinical matched models directly derived from patient tumors. We show that their applicability to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features. We finally highlight the importance of validating and refining predictive transcriptomic signatures using a combination of these models. Abstract Purpose: Compare pancreatic ductal adenocarcinoma (PDAC), preclinical models, by their transcriptome and drug response landscapes to evaluate their complementarity. Experimental Design: Three paired PDAC preclinical models—patient-derived xenografts (PDX), xenograft-derived pancreatic organoids (XDPO) and xenograft-derived primary cell cultures (XDPCC)—were derived from 20 patients and analyzed at the transcriptomic and chemosensitivity level. Transcriptomic characterization was performed using the basal-like/classical subtyping and the PDAC molecular gradient (PAMG). Chemosensitivity for gemcitabine, irinotecan, 5-fluorouracil and oxaliplatin was established and the associated biological pathways were determined using independent component analysis (ICA) on the transcriptome of each model. The selection criteria used to identify the different components was the chemosensitivity score (CSS) found for each drug in each model. Results: PDX was the most dispersed model whereas XDPO and XDPCC were mainly classical and basal-like, respectively. Chemosensitivity scoring determines that PDX and XDPO display a positive correlation for three out of four drugs tested, whereas PDX and XDPCC did not correlate. No match was observed for each tumor chemosensitivity in the different models. Finally, pathway analysis shows a significant association between PDX and XDPO for the chemosensitivity-associated pathways and PDX and XDPCC for the chemoresistance-associated pathways. Conclusions: Each PDAC preclinical model possesses a unique basal-like/classical transcriptomic phenotype that strongly influences their global chemosensitivity. Each preclinical model is imperfect but complementary, suggesting that a more representative approach of the clinical reality could be obtained by combining them. Translational Relevance: The identification of molecular signatures that underpin drug sensitivity to chemotherapy in PDAC remains clinically challenging. Importantly, the vast majority of studies using preclinical in vivo and in vitro models fail when transferred to patients in a clinical setting despite initially promising results. This study presents for the first time a comparison between three preclinical models directly derived from the same patients. We show that their applicability to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features.
Collapse
Affiliation(s)
- Owen Hoare
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France; (O.H.); (N.F.); (A.E.); (O.G.); (M.B.); (J.R.)
| | - Nicolas Fraunhoffer
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France; (O.H.); (N.F.); (A.E.); (O.G.); (M.B.); (J.R.)
| | - Abdessamad Elkaoutari
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France; (O.H.); (N.F.); (A.E.); (O.G.); (M.B.); (J.R.)
| | - Odile Gayet
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France; (O.H.); (N.F.); (A.E.); (O.G.); (M.B.); (J.R.)
| | - Martin Bigonnet
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France; (O.H.); (N.F.); (A.E.); (O.G.); (M.B.); (J.R.)
| | - Julie Roques
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France; (O.H.); (N.F.); (A.E.); (O.G.); (M.B.); (J.R.)
| | - Rémy Nicolle
- Tumour Identity Card Program (CIT), French League Against Cancer, 75013 Paris, France;
| | - Colin McGuckin
- CTIBIOTECH, Cell Therapy Research Institute, 69330 Lyon, France; (C.M.); (N.F.)
| | - Nico Forraz
- CTIBIOTECH, Cell Therapy Research Institute, 69330 Lyon, France; (C.M.); (N.F.)
| | - Emilie Sohier
- Centre Léon Bérard, 69008 Lyon, France; (E.S.); (L.T.); (P.W.); (S.B.); (V.A.); (S.T.-E.)
| | - Laurie Tonon
- Centre Léon Bérard, 69008 Lyon, France; (E.S.); (L.T.); (P.W.); (S.B.); (V.A.); (S.T.-E.)
| | - Pauline Wajda
- Centre Léon Bérard, 69008 Lyon, France; (E.S.); (L.T.); (P.W.); (S.B.); (V.A.); (S.T.-E.)
| | - Sandrine Boyault
- Centre Léon Bérard, 69008 Lyon, France; (E.S.); (L.T.); (P.W.); (S.B.); (V.A.); (S.T.-E.)
| | - Valéry Attignon
- Centre Léon Bérard, 69008 Lyon, France; (E.S.); (L.T.); (P.W.); (S.B.); (V.A.); (S.T.-E.)
| | | | | | | | | | - Juan Iovanna
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France; (O.H.); (N.F.); (A.E.); (O.G.); (M.B.); (J.R.)
- Paoli-Calmettes Institut, 13009 Marseille, France
- Correspondence: (J.I.); (N.J.D.)
| | - Nelson J. Dusetti
- Cancer Research Center of Marseille, CRCM, Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, 13288 Marseille, France; (O.H.); (N.F.); (A.E.); (O.G.); (M.B.); (J.R.)
- Correspondence: (J.I.); (N.J.D.)
| |
Collapse
|
13
|
Kokkinos J, Jensen A, Sharbeen G, McCarroll JA, Goldstein D, Haghighi KS, Phillips PA. Does the Microenvironment Hold the Hidden Key for Functional Precision Medicine in Pancreatic Cancer? Cancers (Basel) 2021; 13:cancers13102427. [PMID: 34067833 PMCID: PMC8156664 DOI: 10.3390/cancers13102427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and no significant improvement in patient survival has been seen in the past three decades. Treatment options are limited and selection of chemotherapy in the clinic is usually based on the performance status of a patient rather than the biology of their disease. In recent years, research has attempted to unlock a personalised treatment strategy by identifying actionable molecular targets in tumour cells or using preclinical models to predict the effectiveness of chemotherapy. However, these approaches rely on the biology of PDAC tumour cells only and ignore the importance of the microenvironment and fibrotic stroma. In this review, we highlight the importance of the microenvironment in driving the chemoresistant nature of PDAC and the need for preclinical models to mimic the complex multi-cellular microenvironment of PDAC in the precision medicine pipeline. We discuss the potential for ex vivo whole-tissue culture models to inform precision medicine and their role in developing novel therapeutic strategies that hit both tumour and stromal compartments in PDAC. Thus, we highlight the critical role of the tumour microenvironment that needs to be addressed before a precision medicine program for PDAC can be implemented.
Collapse
Affiliation(s)
- John Kokkinos
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Anya Jensen
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia;
- School of Women’s and Children’s Health, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
| | - Joshua A. McCarroll
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia;
- School of Women’s and Children’s Health, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Prince of Wales Clinical School, Prince of Wales Hospital, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Koroush S. Haghighi
- Prince of Wales Clinical School, Prince of Wales Hospital, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence:
| |
Collapse
|
14
|
Holbrook MC, Goad DW, Grdzelishvili VZ. Expanding the Spectrum of Pancreatic Cancers Responsive to Vesicular Stomatitis Virus-Based Oncolytic Virotherapy: Challenges and Solutions. Cancers (Basel) 2021; 13:1171. [PMID: 33803211 PMCID: PMC7963195 DOI: 10.3390/cancers13051171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with poor prognosis and a dismal survival rate, expected to become the second leading cause of cancer-related deaths in the United States. Oncolytic virus (OV) is an anticancer approach that utilizes replication-competent viruses to preferentially infect and kill tumor cells. Vesicular stomatitis virus (VSV), one such OV, is already in several phase I clinical trials against different malignancies. VSV-based recombinant viruses are effective OVs against a majority of tested PDAC cell lines. However, some PDAC cell lines are resistant to VSV. Upregulated type I IFN signaling and constitutive expression of a subset of interferon-simulated genes (ISGs) play a major role in such resistance, while other mechanisms, such as inefficient viral attachment and resistance to VSV-mediated apoptosis, also play a role in some PDACs. Several alternative approaches have been shown to break the resistance of PDACs to VSV without compromising VSV oncoselectivity, including (i) combinations of VSV with JAK1/2 inhibitors (such as ruxolitinib); (ii) triple combinations of VSV with ruxolitinib and polycations improving both VSV replication and attachment; (iii) combinations of VSV with chemotherapeutic drugs (such as paclitaxel) arresting cells in the G2/M phase; (iv) arming VSV with p53 transgenes; (v) directed evolution approach producing more effective OVs. The latter study demonstrated impressive long-term genomic stability of complex VSV recombinants encoding large transgenes, supporting further clinical development of VSV as safe therapeutics for PDAC.
Collapse
Affiliation(s)
| | | | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.C.H.); (D.W.G.)
| |
Collapse
|
15
|
Ex vivo culture of intact human patient derived pancreatic tumour tissue. Sci Rep 2021; 11:1944. [PMID: 33479301 PMCID: PMC7820421 DOI: 10.1038/s41598-021-81299-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1-2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.
Collapse
|
16
|
He M, Henderson M, Muth S, Murphy A, Zheng L. Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. ACTA ACUST UNITED AC 2020; 3. [PMID: 32832900 PMCID: PMC7440242 DOI: 10.21037/apc.2020.03.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is in urgent need of better diagnostic and therapeutic methods due to its late diagnosis, limited treatment options and poor prognosis. Finding the right animal models to recapitulate the tumor molecular pathogenesis and tumor microenvironment (TME) complexity is critical for preclinical immunotherapeutic and non-immunotherapeutic treatment developments. In this review, we summarize and evaluate popular preclinical animal models including patient-derived xenograft models, humanized mouse models, genetically engineered mouse models, and syngeneic mouse models. Through comparisons between these models in different research settings, we hope to provide guidance in finding the most relevant preclinical models to suit various research purposes.
Collapse
Affiliation(s)
- Mengni He
- Department of Cell Biology, Baltimore, MD, USA
| | - MacKenzie Henderson
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Murphy
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Precision Medicine Center of Excellence (PMCoE) Program for Pancreatic Cancer, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Precision Medicine Center of Excellence (PMCoE) Program for Pancreatic Cancer, Baltimore, MD, USA
| |
Collapse
|
17
|
Yang CY, Liu CR, Chang IYF, OuYang CN, Hsieh CH, Huang YL, Wang CI, Jan FW, Wang WL, Tsai TL, Liu H, Tseng CP, Chang YS, Wu CC, Chang KP. Cotargeting CHK1 and PI3K Synergistically Suppresses Tumor Growth of Oral Cavity Squamous Cell Carcinoma in Patient-Derived Xenografts. Cancers (Basel) 2020; 12:cancers12071726. [PMID: 32610557 PMCID: PMC7408003 DOI: 10.3390/cancers12071726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023] Open
Abstract
Oral cavity squamous cell carcinomas (OSCCs) are aggressive tumors, and their recurrence leads to poor prognosis and reduced survival rates. This study aimed to identify therapeutic targets and to evaluate the efficacy of targeted inhibitors in OSCC patient-derived xenograft (PDX) models. Herein, we reported that OSCC PDXs recapitulated the genomic signatures of their paired primary tumors and the expression of CHEK1, PIK3CA, and PIK3CD was significantly upregulated in OSCC. The antitumor efficacy of CHK1 inhibitors (PF477736, AZD7762, LY2606368) and PI3K inhibitors (BYL719, GDC0941, GSK1059615) was investigated in OSCC cell lines and PDX models. Targeting either CHK1 or PI3K effectively inhibited cell proliferation and colony formation by inducing cell cycle arrest and apoptosis in in vitro cell-based assays. Cisplatin-based chemotherapy combined with CHK1 inhibitor treatment synergistically inhibited cell proliferation by suppressing CHK1 phosphorylation and inducing PARP cleavage. Furthermore, compared with monotherapy, cotreatment with CHK1 and PI3K inhibitors exerted synergistic anticancer effects by suppressing CHK1, AKT, and 4E-BP1 phosphorylation. In summary, our study identified CHK1 and PI3K as promising targets, especially in a dual treatment strategy combining a CHK1 inhibitor with cisplatin or a PI3K inhibitor as a novel therapeutic approach for OSCC patients with aberrant cell cycle regulation and PI3K signaling activation.
Collapse
Affiliation(s)
- Chia-Yu Yang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.L.); (Y.-S.C.)
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
| | - Chiao-Rou Liu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chun-I Wang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Fei-Wen Jan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
| | - Wan-Ling Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
| | - Ting-Lin Tsai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.Y.); (C.-R.L.); (F.-W.J.); (W.-L.W.); (T.-L.T.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.L.); (Y.-S.C.)
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.L.); (Y.-S.C.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (H.L.); (Y.-S.C.)
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
| | - Chih-Ching Wu
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: (C.-C.W.); or (K.-P.C.)
| | - Kai-Ping Chang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (I.Y.-F.C.); (C.-N.O.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-C.W.); or (K.-P.C.)
| |
Collapse
|
18
|
Gendoo DMA. Bioinformatics and computational approaches for analyzing patient-derived disease models in cancer research. Comput Struct Biotechnol J 2020; 18:375-380. [PMID: 32128067 PMCID: PMC7044647 DOI: 10.1016/j.csbj.2020.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
Patient-derived organoids (PDO) and patient-derived xenografts (PDX) continue to emerge as important preclinical platforms for investigations into the molecular landscape of cancer. While the advantages and disadvantage of these models have been described in detail, this review focuses in particular on the bioinformatics and state-of-the art techniques that accompany preclinical model development. We discuss the strength and limitations of currently used technologies, particularly 'omics profiling and bioinformatics analyses, in addressing the 'efficacy' of preclinical models, both for tumour characterization as well as their use in identifying potential therapeutics. We select pancreatic ductal adenocarcinoma (PDAC) as a case study to highlight the state of the art of the field, and address new avenues for improved bioinformatics characterization of preclinical models.
Collapse
Affiliation(s)
- Deena M A Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
19
|
Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010163. [PMID: 31936565 PMCID: PMC7017270 DOI: 10.3390/cancers12010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction: Despite improvements in radiation therapy, chemotherapy and surgical procedures over the last 30 years, pancreatic cancer 5-year survival rate remains at 9%. Reduced stroma permeability and heterogeneous blood supply to the tumour prevent chemoradiation from making a meaningful impact on overall survival. Hypoxia-activated prodrugs are the latest strategy to reintroduce oxygenation to radioresistant cells harbouring in pancreatic cancer. This paper reviews the current status of photon and particle radiation therapy for pancreatic cancer in combination with systemic therapies and hypoxia activators. Methods: The current effectiveness of management of pancreatic cancer was systematically evaluated from MEDLINE® database search in April 2019. Results: Limited published data suggest pancreatic cancer patients undergoing carbon ion therapy and proton therapy achieve a comparable median survival time (25.1 months and 25.6 months, respectively) and 1-year overall survival rate (84% and 77.8%). Inconsistencies in methodology, recording parameters and protocols have prevented the safety and technical aspects of particle therapy to be fully defined yet. Conclusion: There is an increasing requirement to tackle unmet clinical demands of pancreatic cancer, particularly the lack of synergistic therapies in the advancing space of radiation oncology.
Collapse
Affiliation(s)
- Mikaela Dell’Oro
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- Correspondence: ; Tel.: +61-435214264
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- School of Engineering, University of South Australia, Adelaide SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
20
|
Wang CF, Shi XJ. Generation and application of patient-derived xenograft models in pancreatic cancer research. Chin Med J (Engl) 2019; 132:2729-2736. [PMID: 31725451 PMCID: PMC6940092 DOI: 10.1097/cm9.0000000000000524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma cancer (PDAC) is one of the leading causes of cancer-related death worldwide. Hence, the development of effective anti-PDAC therapies is urgently required. Patient-derived xenograft (PDX) models are useful models for developing anti-cancer therapies and screening drugs for precision medicine. This review aimed to provide an updated summary of using PDX models in PDAC. DATA SOURCES The author retrieved information from the PubMed database up to June 2019 using various combinations of search terms, including PDAC, pancreatic carcinoma, pancreatic cancer, patient-derived xenografts or PDX, and patient-derived tumor xenografts or PDTX. STUDY SELECTION Original articles and review articles relevant to the review's theme were selected. RESULTS PDX models are better than cell line-derived xenograft and other models. PDX models consistently demonstrate retained tumor morphology and genetic stability, are beneficial in cancer research, could enhance drug discovery and oncologic mechanism development of PDAC, allow an improved understanding of human cancer cell biology, and help guide personalized treatment. CONCLUSIONS In this review, we outline the status and application of PDX models in both basic and pre-clinical pancreatic cancer researches. PDX model is one of the most appropriate pre-clinical tools that can improve the prognosis of patients with pancreatic cancer in the future.
Collapse
Affiliation(s)
- Cheng-Fang Wang
- Department of Hepato-Biliary Surgery, The General Hospital of People's Liberation Army (301 hospital), Beijing 100853, China
| | | |
Collapse
|
21
|
Annonacin promotes selective cancer cell death via NKA-dependent and SERCA-dependent pathways. Cell Death Dis 2018; 9:764. [PMID: 29988040 PMCID: PMC6037677 DOI: 10.1038/s41419-018-0772-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
In the healthcare sector, phytocompounds are known to be beneficial by contributing or alleviating a variety of diseases. Studies have demonstrated the progressive effects of phytocompounds on immune-related diseases and to exhibit anticancer effects. Graviola tree is an evergreen tree with its extracts (leafs and seeds) been reported having anticancer properties, but the precise target of action is not clear. Using an in silico approach, we predicted that annonacin, an Acetogenin, the active agent found in Graviola leaf extract (GLE) to potentially act as a novel inhibitor of both sodium/potassium (NKA) and sarcoplasmic reticulum (SERCA) ATPase pumps. We were able to validate and confirm the in silico studies by showing that GLE inhibited NKA and SERCA activity in intact cells. In the present study, we also demonstrated the antiproliferative and anticancer effects of GLE in a variety of cancer cell lines with limited toxic effects on non-transformed cells. Moreover, our results revealed that known inhibitors of both NKA and SERCA pumps could also promote cell death in several cancer cell lines. In addition, a mouse xenograft cancer model showed GLE as able to reduce tumor size and progression. Finally, bioprofiling studies indicated a strong correlation between overexpression of both NKA and SERCA gene expression vs. survival rates. Overall, our results demonstrated that GLE can promote selective cancer cell death via inhibiting NKA and SERCA, and thus can be considered as a potential novel treatment for cancer. After molecular analysis of GLE by liquid chromatography–mass spectrometry and ESI–QTOF–MS analysis, it was found that the MS spectrum of the high abundant chromatographic peak purified sample highly consisted of annonacin.
Collapse
|