1
|
Srinivasan A, Sing JC, Gingras AC, Röst HL. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry. J Proteome Res 2022; 21:1789-1799. [PMID: 35877786 DOI: 10.1021/acs.jproteome.2c00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry-based profiling of the phosphoproteome is a powerful method of identifying phosphorylation events at a systems level. Most phosphoproteomics studies have used data-dependent acquisition (DDA) mass spectrometry as their method of choice. In this Perspective, we review some recent studies benchmarking DDA and DIA methods for phosphoproteomics and discuss data analysis options for DIA phosphoproteomics. In order to evaluate the impact of data-dependent and data-independent acquisition (DIA) on identification and quantification, we analyze a previously published phosphopeptide-enriched data set consisting of 10 replicates acquired by DDA and DIA each. We find that though more unique identifications are made in DDA data, phosphopeptides are identified more consistently across replicates in DIA. We further discuss the challenges of identifying chromatographically coeluting phosphopeptide isomers and investigate the impact on reproducibility of identifying high-confidence site-localized phosphopeptides in replicates.
Collapse
Affiliation(s)
- Aparna Srinivasan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Justin C Sing
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Hannes L Röst
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
2
|
Zeneyedpour L, Stingl C, Kros JM, Sillevis Smitt PAE, Luider TM. Novel Antibody-Peptide Binding Assay Indicates Presence of Immunoglobulins against EGFR Phospho-Site S1166 in High-Grade Glioma. Int J Mol Sci 2022; 23:5061. [PMID: 35563452 PMCID: PMC9100080 DOI: 10.3390/ijms23095061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the feasibility of detecting the presence of specific autoantibodies against potential tumor-associated peptide antigens by enriching these antibody-peptide complexes using Melon Gel resin and mass spectrometry. Our goal was to find tumor-associated phospho-sites that trigger immunoreactions and raise autoantibodies that are detectable in plasma of glioma patients. Such immunoglobulins can potentially be used as targets in immunotherapy. To that aim, we describe a method to detect the presence of antibodies in biological samples that are specific to selected clinically relevant peptides. The method is based on the formation of antibody-peptide complexes by mixing patient plasma with a glioblastoma multiforme (GBM) derived peptide library, enrichment of antibodies and antibody-peptide complexes, the separation of peptides after they are released from immunoglobulins by molecular weight filtration and finally mass spectrometric quantification of these peptides. As proof of concept, we successfully applied the method to dinitrophenyl (DNP)-labeled α-casein peptides mixed with anti-DNP. Further, we incubated human plasma with a phospho-peptide library and conducted targeted analysis on EGFR and GFAP phospho-peptides. As a result, immunoaffinity against phospho-peptide GSHQIS[+80]LDNPDYQQDFFPK (EGFR phospho-site S1166) was detected in high-grade glioma (HGG) patient plasma but not in healthy donor plasma. For the GFAP phospho-sites selected, such immunoaffinity was not observed.
Collapse
Affiliation(s)
- Lona Zeneyedpour
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (L.Z.); (C.S.); (P.A.E.S.S.)
| | - Christoph Stingl
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (L.Z.); (C.S.); (P.A.E.S.S.)
| | - Johan M. Kros
- Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
| | | | - Theo M. Luider
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (L.Z.); (C.S.); (P.A.E.S.S.)
| |
Collapse
|
3
|
Analysis of protein phosphorylation using Phos-tag gels. J Proteomics 2022; 259:104558. [DOI: 10.1016/j.jprot.2022.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
|
4
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Zeneyedpour L, Stingl C, Dekker LJM, Mustafa DAM, Kros JM, Luider TM. Phosphorylation Ratio Determination in Fresh-Frozen and Formalin-Fixed Paraffin-Embedded Tissue with Targeted Mass Spectrometry. J Proteome Res 2020; 19:4179-4190. [PMID: 32811146 DOI: 10.1021/acs.jproteome.0c00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are routinely prepared and collected for diagnostics in pathology departments. These are, therefore, the most accessible research sources in pathology archives. In this study we investigated whether we can apply a targeted and quantitative parallel reaction monitoring (PRM) method for FFPE tissue samples in a sensitive and reproducible way. The feasibility of this technical approach was demonstrated for normal brain and glioblastoma multiforme tissues. Two methods were used: PRM measurement of a tryptic digest without phosphopeptide enrichment (Direct-PRM) and after Fe-NTA phosphopeptide enrichment (Fe-NTA-PRM). With these two methods, the phosphorylation ratio could be determined for four selected peptide pairs that originate from neuroblast differentiation-associated protein (AHNAK S5448-p), calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D T337-p), eukaryotic translation initiation factor 4B (EIF4B S93-p), and epidermal growth factor receptor (EGFR S1166-p). In normal brain FFPE tissues, the Fe-NTA-PRM method enabled the quantification of targeted phosphorylated peptides with high reproducibility (CV < 14%). Our results indicate that formalin fixation does not impede relative quantification of a phospho-site and its phosphorylation ratio in FFPE tissues. The developed workflow combining these methods opens ways to study archival FFPE tissues for phosphorylation ratio determination in proteins.
Collapse
Affiliation(s)
- Lona Zeneyedpour
- Department of Neurology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Christoph Stingl
- Department of Neurology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | | | - Dana A M Mustafa
- Department of Pathology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
6
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Reconstructing phosphorylation signalling networks from quantitative phosphoproteomic data. Essays Biochem 2018; 62:525-534. [PMID: 30072490 PMCID: PMC6204553 DOI: 10.1042/ebc20180019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
Abstract
Cascades of phosphorylation between protein kinases comprise a core mechanism in the integration and propagation of intracellular signals. Although we have accumulated a wealth of knowledge around some such pathways, this is subject to study biases and much remains to be uncovered. Phosphoproteomics, the identification and quantification of phosphorylated proteins on a proteomic scale, provides a high-throughput means of interrogating the state of intracellular phosphorylation, both at the pathway level and at the whole-cell level. In this review, we discuss methods for using human quantitative phosphoproteomic data to reconstruct the underlying signalling networks that generated it. We address several challenges imposed by the data on such analyses and we consider promising advances towards reconstructing unbiased, kinome-scale signalling networks.
Collapse
|