1
|
Cheung JKW, Li KK, Zhou L, To CH, Lam TC. Identification of Potential Growth-Related Proteins in Chick Vitreous during Emmetropization Using SWATH-MS and Targeted-Based Proteomics (MRMHR). Int J Mol Sci 2024; 25:10644. [PMID: 39408973 PMCID: PMC11476992 DOI: 10.3390/ijms251910644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The vitreous humor (VH) is a transparent gelatin-like substance that occupies two-thirds of the eyeball and undergoes the most significant changes during eye elongation. Quantitative proteomics on the normal growth period in the VH could provide new insights into understanding its progression mechanism in the early stages of myopia. In this study, a data-independent acquisition (SWATH-MS) was combined with targeted LC-ESI-MS/MS to identify and quantify the relative protein changes in the vitreous during the normal growth period (4, 7, 14, 21 and 28 days old) in the chick model. Chicks were raised under normal growing conditions (12/12 h Dark/light cycle) for 28 days, where ocular measurements, including refractive and biometric measurements, were performed on days 4 (baseline), 7, 14, 21 and 28 (n = 6 chicks at each time point). Extracted vitreous proteins from individual animals were digested and pooled into a left eye pool and a right pool at each time point for protein analysis. The vitreous proteome for chicks was generated using an information-dependent acquisition (IDA) method by combining injections from individual time points. Using individual pool samples, SWATH-MS was employed to quantify proteins between each time point. DEPs were subsequently confirmed in separate batches of animals individually on random eyes (n = 4) using MRMHR between day 7 and day 14. Refraction and vitreous chamber depth (VCD) were found to be significantly changed (p < 0.05, n = 6 at each time point) during the period. A comprehensive vitreous protein ion library was built with 1576 non-redundant proteins (22987 distinct peptides) identified at a 1% false discovery rate (FDR). A total of 12 up-regulated and 26 down-regulated proteins were found across all time points compared to day 7 using SWATH-MS. Several DEPs, such as alpha-fetoprotein, the cadherin family group, neurocan, and reelin, involved in structural and growth-related pathways, were validated for the first time using MRMHR under this experimental condition. This study provided the first comprehensive spectral library of the vitreous for chicks during normal growth as well as a list of potential growth-related protein biomarker candidates using SWATH-MS and MRMHR during the emmetropization period.
Collapse
Affiliation(s)
- Jimmy Ka-Wai Cheung
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
| | - Lei Zhou
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
2
|
Ji S, Ye L, Zhang L, Xu D, Dai J. Retinal neurodegeneration in a mouse model of green-light-induced myopia. Exp Eye Res 2022; 223:109208. [DOI: 10.1016/j.exer.2022.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
|
3
|
Zhu Y, Bian JF, Lu DQ, To CH, Lam CSY, Li KK, Yu FJ, Gong BT, Wang Q, Ji XW, Zhang HM, Nian H, Lam TC, Wei RH. Alteration of EIF2 Signaling, Glycolysis, and Dopamine Secretion in Form-Deprived Myopia in Response to 1% Atropine Treatment: Evidence From Interactive iTRAQ-MS and SWATH-MS Proteomics Using a Guinea Pig Model. Front Pharmacol 2022; 13:814814. [PMID: 35153787 PMCID: PMC8832150 DOI: 10.3389/fphar.2022.814814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: Atropine, a non-selective muscarinic antagonist, effectively slows down myopia progression in human adolescents and several animal models. However, the underlying molecular mechanism is unclear. The current study investigated retinal protein changes of form-deprived myopic (FDM) guinea pigs in response to topical administration of 1% atropine gel (10 g/L). Methods: At the first stage, the differentially expressed proteins were screened using fractionated isobaric tags for a relative and absolute quantification (iTRAQ) approach, coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) (n = 24, 48 eyes) using a sample pooling technique. At the second stage, retinal tissues from another cohort with the same treatment (n = 12, 24 eyes) with significant ocular changes were subjected to label-free sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics for orthogonal protein target confirmation. The localization of Alpha-synuclein was verified using immunohistochemistry and confocal imaging. Results: A total of 1,695 proteins (8,875 peptides) were identified with 479 regulated proteins (FC ≥ 1.5 or ≤0.67) found from FDM eyes and atropine-treated eyes receiving 4-weeks drug treatment using iTRAQ-MS proteomics. Combining the iTRAQ-MS and SWATH-MS datasets, a total of 29 confident proteins at 1% FDR were consistently quantified and matched, comprising 12 up-regulated and 17 down-regulated proteins which differed between FDM eyes and atropine treated eyes (iTRAQ: FC ≥ 1.5 or ≤0.67, SWATH: FC ≥ 1.4 or ≤0.71, p-value of ≤0.05). Bioinformatics analysis using IPA and STRING databases of these commonly regulated proteins revealed the involvement of the three commonly significant pathways: EIF2 signaling; glycolysis; and dopamine secretion. Additionally, the most significantly regulated proteins were closely connected to Alpha-synuclein (SNCA). Using immunostaining (n = 3), SNCA was further confirmed in the inner margin of the inner nuclear layer (INL) and spread throughout the inner plexiform layer (IPL) of the retina of guinea pigs. Conclusion: The molecular evidence using next-generation proteomics (NGP) revealed that retinal EIF2 signaling, glycolysis, and dopamine secretion through SNCA are implicated in atropine treatment of myopia in the FDM-induced guinea pig model.
Collapse
Affiliation(s)
- Ying Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jing Fang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Da Qian Lu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Carly Siu-Yin Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - King Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Feng Juan Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Teng Gong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiong Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiao Wen Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Mei Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- *Correspondence: Rui Hua Wei, ; Thomas Chuen Lam,
| | - Rui Hua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Rui Hua Wei, ; Thomas Chuen Lam,
| |
Collapse
|
4
|
Shan SSW, Wang PF, Cheung JKW, Yu F, Zheng H, Luo S, Yip SP, To CH, LAM C. Transcriptional profiling of the chick retina identifies down-regulation of VIP and UTS2B genes during early lens-induced myopia. Mol Omics 2022; 18:449-459. [DOI: 10.1039/d1mo00407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene expression of the chick retina was examined during the early development of lens-induced myopia (LIM) using whole transcriptome sequencing. Monocular treatment of the right eyes with −10 diopter (D)...
Collapse
|
5
|
Tse JSH, Cheung JKW, Wong GTK, Lam TC, Choi KY, So KHY, Lam CDM, Sze AYH, Wong ACK, Yee GMC, Chan HHL. Integrating Clinical Data and Tear Proteomics to Assess Efficacy, Ocular Surface Status, and Biomarker Response After Orthokeratology Lens Wear. Transl Vis Sci Technol 2021; 10:18. [PMID: 34559185 PMCID: PMC8475286 DOI: 10.1167/tvst.10.11.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose This study evaluated the efficacy and ocular surface status of Breath-O Correct, novel orthokeratology (OK) lenses, worn overnight for 3 months. Lens-induced changes in the tear proteome were evaluated. Methods Thirty-one subjects, aged 19 to 26 years with refractive error from -1.00 to -5.00 D, were randomly assigned 1:1 to the treatment or control group. Refraction, visual acuity, corneal integrity, biomechanics and endothelial health, ocular surface changes, and subjective symptoms were assessed at the baseline, one-month, and three-month visits. The tear proteome was characterized over time using sequential window acquisition of all theoretical ion spectra mass spectrometry. Results Lenses improved uncorrected visual acuity and reduced spherical powers with similar efficacy to other OK lenses. Significant reductions (P < 0.05) in corneal hysteresis (11.12 ± 1.12 to 10.38 ± 1.36 mm Hg) and corneal resistance factor (11.06 ± 1.32 to 9.90 ± 1.45 mm Hg) were observed in the treatment group after one month of lens wear, whereas other assessed factors remained unchanged. Thirteen and eight differentially expressed proteins were found after one month and three months of lens wear, respectively. Two proteins (proline-rich protein 27 and immunoglobulin V regions) were differentially expressed at both visits. Conclusions Over a three-month period, Breath-O Correct lenses were overall safe, well tolerated, efficacious in refractive power reduction, and comparable with other OK lenses. Furthermore, their use caused only minor noninflammatory protein expression changes in the tear proteome. Translational Relevance This study investigated the safety of orthokeratology contact lenses on the ocular surface in molecular aspects and standard clinical parameters.
Collapse
Affiliation(s)
- Jimmy S. H. Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Jimmy K. W. Cheung
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Gigi T. K. Wong
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Thomas C. Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Kai Yip Choi
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Katherine H. Y. So
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Christie D. M. Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Andes Y. H. Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Angel C. K. Wong
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Gigi M. C. Yee
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Henry H. L. Chan
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- Centre for Eye and Vision Research (CEVR), Hong Kong
- University Research Facilities in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
6
|
Kwong JMK, Caprioli J, Sze YH, Yu FJ, Li KK, To CH, Lam TC. Differential Retinal Protein Expression in Primary and Secondary Retinal Ganglion Cell Degeneration Identified by Integrated SWATH and Target-Based Proteomics. Int J Mol Sci 2021; 22:ijms22168592. [PMID: 34445296 PMCID: PMC8395271 DOI: 10.3390/ijms22168592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
To investigate the retinal proteins associated with primary and secondary retinal ganglion cell (RGC) degeneration and explore their molecular pathways, SWATH label-free and target-based mass spectrometry was employed to identify the proteomes in various retinal locations in response to localized optic nerve injury. Unilateral partial optic nerve transection (pONT) was performed on adult Wistar rats and their retinas were harvested 2 weeks later. To confirm the separation of primary and secondary RGC degeneration, immunohistochemistry of RNA binding protein with multiple splicing (RBPMS) and glial fibrillary acidic protein (GFAP) was performed on retinal whole-mounts. Retinal proteomes in the temporal and nasal quadrants were evaluated with high resolution hybrid quadrupole time-of-flight mass spectrometry (QTOF-MS), and SWATH-based acquisition, and their expression was compared to the corresponding retinal quadrant in contralateral control eyes and further validated by multiple reaction monitoring mass spectrometry (MRM-MS). A total of 3641 proteins (FDR < 1%) were identified using QTOF-MS. The raw data are available via ProteomeXchange with the identifier PXD026783. Bioinformatics data analysis showed that there were 37 upregulated and 25 downregulated proteins in the temporal quadrant, whereas 20 and five proteins were upregulated and downregulated, respectively, in the nasal quadrant, respectively (n = 4, p < 0.05; fold change ≥ 1.4-fold or ≤0.7). Six proteins were regulated in both the temporal and the nasal quadrants, including CLU, GFAP, GNG5, IRF2BPL, L1CAM, and CPLX1. Linear regression analysis indicated a strong association between the data obtained by means of SWATH-MS and MRM-MS (temporal, R2 = 0.97; nasal, R2 = 0.96). Gene ontology analysis revealed statistically significant changes in the biological processes and cellular components of primary RGC degeneration. The majority of the significant changes in structural, signaling, and cell death proteins were associated with the loss of RGCs in the area of primary RGC degeneration. The combined use of SWATH-MS and MRM-MS methods detects and quantifies regional changes of retinal protein expressions after localized injury. Future investigation with this integrated approach will significantly increase the understanding of diverse processes of progressive RGC degeneration from a proteomic prospective.
Collapse
Affiliation(s)
- Jacky M. K. Kwong
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Correspondence: (J.M.K.K.); (T.C.L.)
| | - Joseph Caprioli
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Ying H. Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Feng J. Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - King K. Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chi H. To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
| | - Thomas C. Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China; (Y.H.S.); (F.J.Y.); (K.K.L.); (C.H.T.)
- Centre for Eye and Vision Science, School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
- Correspondence: (J.M.K.K.); (T.C.L.)
| |
Collapse
|
7
|
Bian J, Sze YH, Tse DYY, To CH, McFadden SA, Lam CSY, Li KK, Lam TC. SWATH Based Quantitative Proteomics Reveals Significant Lipid Metabolism in Early Myopic Guinea Pig Retina. Int J Mol Sci 2021; 22:4721. [PMID: 33946922 PMCID: PMC8124159 DOI: 10.3390/ijms22094721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
Most of the previous myopic animal studies employed a single-candidate approach and lower resolution proteomics approaches that were difficult to detect minor changes, and generated limited systems-wide biological information. Hence, a complete picture of molecular events in the retina involving myopic development is lacking. Here, to investigate comprehensive retinal protein alternations and underlying molecular events in the early myopic stage, we performed a data-independent Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH) based proteomic analysis coupled with different bioinformatics tools in pigmented guinea pigs after 4-day lens-induced myopia (LIM). Myopic eyes compared to untreated contralateral control eyes caused significant changes in refractive error and choroid thickness (p < 0.05, n = 5). Relative elongation of axial length and the vitreous chamber depth were also observed. Using pooled samples from all individuals (n = 10) to build a species-specific retinal ion library for SWATH analysis, 3202 non-redundant proteins (with 24,616 peptides) were identified at 1% global FDR. For quantitative analysis, the 10 individual retinal samples (5 pairs) were analyzed using a high resolution Triple-TOF 6600 mass spectrometry (MS) with technical replicates. In total, 37 up-regulated and 21 down-regulated proteins were found significantly changed after LIM treatment (log2 ratio (T/C) > 0.26 or < -0.26; p ≤ 0.05). Data are accepted via ProteomeXchange with identifier PXD025003. Through Ingenuity Pathways Analysis (IPA), "lipid metabolism" was found as the top function associated with the differentially expressed proteins. Based on the protein abundance and peptide sequences, expression patterns of two regulated proteins (SLC6A6 and PTGES2) identified in this pathway were further successfully validated with high confidence (p < 0.05) using a novel Multiple Reaction Monitoring (MRM) assay on a QTRAP 6500+ MS. In summary, through an integrated discovery and targeted proteomic approach, this study serves as the first report to detect and confirm novel retinal protein changes and significant biological functions in the early LIM mammalian guinea pigs. The study provides new workflow and insights for further research to myopia control.
Collapse
Affiliation(s)
- Jingfang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
| | - Ying-Hon Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
| | - Dennis Yan-Yin Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Sally A. McFadden
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Carly Siu-Yin Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (J.B.); (Y.-H.S.); (D.Y.-Y.T.); (C.-H.T.); (C.S.-Y.L.); (K.-K.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
| |
Collapse
|
8
|
Corneal proteome and differentially expressed corneal proteins in highly myopic chicks using a label-free SWATH-MS quantification approach. Sci Rep 2021; 11:5495. [PMID: 33750851 PMCID: PMC7943770 DOI: 10.1038/s41598-021-84904-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Myopia, or short-sightedness, is a highly prevalent refractive disorder in which the eye's focal length is too short for its axial dimension in its relaxed state. High myopia is associated with increased risks of blinding ocular complications and abnormal eye shape. In addition to consistent findings on posterior segment anomalies in high myopia (e.g., scleral remodeling), more recent biometric and biomechanical data in myopic humans and animal models also indicate anterior segment anomalies (e.g., corneal biomechanical properties). Because the cornea is the anterior-most ocular tissue, providing essential refractive power and physiological stability, it is important to understand the biochemical signaling pathway during myopia development. This study first aimed to establish the entire chicken corneal proteome. Then, using the classical form deprivation paradigm to induce high myopia in chicks, state-of-the-art bioinformatics technologies were applied to identify eight differentially expressed proteins in the highly myopic cornea. These results provide strong foundation for future corneal research, especially those using chicken as an animal model for myopia development.
Collapse
|
9
|
Sze YH, Zhao Q, Cheung JKW, Li KK, Tse DYY, To CH, Lam TC. High-pH reversed-phase fractionated neural retina proteome of normal growing C57BL/6 mouse. Sci Data 2021; 8:27. [PMID: 33500412 PMCID: PMC7838270 DOI: 10.1038/s41597-021-00813-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The retina is a key sensory tissue composed of multiple layers of cell populations that work coherently to process and decode visual information. Mass spectrometry-based proteomics approach has allowed high-throughput, untargeted protein identification, demonstrating the presence of these proteins in the retina and their involvement in biological signalling cascades. The comprehensive wild-type mouse retina proteome was prepared using a novel sample preparation approach, the suspension trapping (S-Trap) filter, and further fractionated with high-pH reversed phase chromatography involving a total of 28 injections. This data-dependent acquisition (DDA) approach using a Sciex TripleTOF 6600 mass spectrometer identified a total of 7,122 unique proteins (1% FDR), and generated a spectral library of 5,950 proteins in the normal C57BL/6 mouse retina. Data-independent acquisition (DIA) approach relies on a large and high-quality spectral library to analyse chromatograms, this spectral library would enable access to SWATH-MS acquisition to provide unbiased, multiplexed, and quantification of proteins in the mouse retina, acting as the most extensive reference library to investigate retinal diseases using the C57BL/6 mouse model.
Collapse
Affiliation(s)
- Ying Hon Sze
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research, Hong Kong, China
| | - Jimmy Ka Wai Cheung
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
| | - King Kit Li
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
| | - Dennis Yan Yin Tse
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research, Hong Kong, China
| | - Chi Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research, Hong Kong, China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China.
- Centre for Eye and Vision Research, Hong Kong, China.
| |
Collapse
|
10
|
Zhang T, Jiang Q, Xu F, Zhang R, Liu D, Guo D, Wu J, Wen Y, Wang X, Jiang W, Bi H. Alternation of Resting-State Functional Connectivity Between Visual Cortex and Hypothalamus in Guinea Pigs With Experimental Glucocorticoid Enhanced Myopia After the Treatment of Electroacupuncture. Front Neuroinform 2021; 14:579769. [PMID: 33519409 PMCID: PMC7838498 DOI: 10.3389/fninf.2020.579769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive glucocorticoids (GC) may lead to the aggravation of several basic diseases including myopia, due to plasma hormone imbalances associated with the hypothalamic–pituitary–adrenal axis (HPAA). Electroacupuncture (EA) is an effective therapeutic method to treat many diseases, although it remains unclear whether EA at acupoints on the foot or back would be effective in treating eye diseases. It was recently found that visual cortex activity for responses to visual stimuli with spatial frequency and resting-state functional connectivity (FC) between the supramarginal gyrus and rostrolateral prefrontal cortex was significantly reduced in patients with high myopia. The present study aims to investigate the role of the alternation of resting-state FC among the bilateral visual cortex and hypothalamus in exerting anti-myopia effects of EA in GC-enhanced lens-induced myopic (LIM) guinea pigs such that the mechanisms of EA to treat GC-enhanced myopia at Shenshu (BL23) acupoints can be probed. To confirm the effects of EA, ocular parameters including axial length and GC-associated physiological parameters such as animal appearance, behavior, bodyweight, and levels of four HPAA-associated plasma hormones [free triiodothyronine (FT3), free thyroxine (FT4), estradiol (E2), and testosterone (T)] were also collected. Increased resting-state FC between the left and right visual cortex was detected in GC-enhanced lens-induced myopic guinea pigs with EA at BL23 acupoints (LIM+GC+EA) guinea pigs compared to GC-enhanced lens-induced myopic guinea pigs with EA at sham acupoints (LIM+GC+Sham) guinea pigs, as well as suppressed myopia and recovery of symptoms initially caused by overdose of GC. Recovered symptoms included improved animal appearance, behavior, bodyweight, and HPAA-associated plasma hormone levels were observed after 4 weeks of EA treatment. In contrast, the LIM+GC+Sham group showed decreased FC with elongation of axial length for myopization as compared to the control group and LIM group and exhibited a deterioration in physiological parameters including reduced body weight and balance disruption in the four measured HPAA-associated plasma hormones. Our findings suggest that EA could effectively treat GC-enhanced myopia by increasing resting-state FC between the left and right visual cortices, which may be pivotal to further understanding the application and mechanisms of EA in treating GC-enhanced myopia.
Collapse
Affiliation(s)
- Tao Zhang
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Jiang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Furu Xu
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dezheng Liu
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dadong Guo
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianfeng Wu
- Department of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Wen
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xingrong Wang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjun Jiang
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Shandong Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Disease, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Abstract
Myopia is a globally emerging issue, with multiple medical and socio-economic burdens and no well-established causal treatment thus far. A better insight into altered biochemical pathways and underlying pathogenesis might facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the metabolomics and proteomics of myopia in humans and present various experimental approaches and animal models, along with their strengths and weaknesses. We also discuss the potential applicability of these findings to medical practice and suggest directions for future research.
Collapse
|
12
|
Yu FJ, Lam TC, Sze AYH, Li KK, Chun RKM, Shan SW, To CH. Alteration of retinal metabolism and oxidative stress may implicate myopic eye growth: Evidence from discovery and targeted proteomics in an animal model. J Proteomics 2020; 221:103684. [PMID: 32061809 DOI: 10.1016/j.jprot.2020.103684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
Abstract
Myopia, the most common cause of impaired vision, may induce sight- threatening diseases or ocular complications due to axial elongation. The exact mechanisms underlying myopia development have received much attention and understanding of these is necessary for clinical prevention or therapeutics. In this study, quantitative proteomics using Isotope Coded Protein Label (ICPL) was applied to identify differentially regulated proteins in the retinas of myopic chicks and, from their presence, infer the possible pathogenesis of excessive ocular elongation. Newly hatched white leghorn chicks (n = 15) wore -10D and + 10D lenses bilaterally for 3 and 7 days, respectively, to develop progressive lens-induced myopia (LIM) and hyperopia (LIH). Retinal proteins were quantified with nano-liquid chromatography electrospray ionization coupled with tandem mass spectrometry (nanoLC-ESI-MS/MS). Bioinformatics analysis of differentially regulated proteins revealed that the majority originated from the cytoplasmic region and were related to various metabolic, glycolytic, or oxidative processes. The fold changes of four proteins of interest (vimentin, apolipoprotein A1, interphotoreceptor retinoid binding protein, and glutathione S-transferase) were further confirmed by a novel high-resolution multiple reaction monitoring mass spectrometry (MRM-HR) using a label-free approach. SIGNIFICANCE: Discovery of effective protein biomarkers of myopia has been extensively studied to inhibit myopia progression. This study first applied lens-induced hyperopia and myopia in the same chick to maximize the inter-ocular differences, aiming to discover more protein biomarker candidates. The findings provided new evidence that myopia was metabolism related, accompanied by altered energy generation and oxidative stress at retinal protein levels. The results in the retina were also compared to our previous study in vitreous using ICPL quantitative technology. We have now presented the protein changes in these two adjacent tissues, which may provide extra information of protein changes during ocular growth in myopia.
Collapse
Affiliation(s)
- Feng-Juan Yu
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Andes Ying-Hon Sze
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - King-Kit Li
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rachel Ka-Man Chun
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sze-Wan Shan
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chi-Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
13
|
Noor Z, Ranganathan S. Bioinformatics approaches for improving seminal plasma proteome analysis. Theriogenology 2019; 137:43-49. [PMID: 31186128 DOI: 10.1016/j.theriogenology.2019.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reproduction efficiency of male animals is one of the key factors influencing the sustainability of livestock. Mass spectrometry (MS) based proteomics has become an important tool for studying seminal plasma proteomes. In this review, we summarize bioinformatics analysis strategies for current proteomics approaches, for identifying novel biomarkers of reproductive robustness.
Collapse
Affiliation(s)
- Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
14
|
Palmowski P, Watson R, Europe-Finner GN, Karolczak-Bayatti M, Porter A, Treumann A, Taggart MJ. The Generation of a Comprehensive Spectral Library for the Analysis of the Guinea Pig Proteome by SWATH-MS. Proteomics 2019; 19:e1900156. [PMID: 31301205 PMCID: PMC6771470 DOI: 10.1002/pmic.201900156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Advances in liquid chromatography‐mass spectrometry have facilitated the incorporation of proteomic studies to many biology experimental workflows. Data‐independent acquisition platforms, such as sequential window acquisition of all theoretical mass spectra (SWATH‐MS), offer several advantages for label‐free quantitative assessment of complex proteomes over data‐dependent acquisition (DDA) approaches. However, SWATH data interpretation requires spectral libraries as a detailed reference resource. The guinea pig (Cavia porcellus) is an excellent experimental model for translation to many aspects of human physiology and disease, yet there is limited experimental information regarding its proteome. To overcome this knowledge gap, a comprehensive spectral library of the guinea pig proteome is generated. Homogenates and tryptic digests are prepared from 16 tissues and subjected to >200 DDA runs. Analysis of >250 000 peptide‐spectrum matches resulted in a library of 73 594 peptides from 7666 proteins. Library validation is provided by i) analyzing externally derived SWATH files (https://doi.org/10.1016/j.jprot.2018.03.023) and comparing peptide intensity quantifications; ii) merging of externally derived data to the base library. This furnishes the research community with a comprehensive proteomic resource that will facilitate future molecular‐phenotypic studies using (re‐engaging) the guinea pig as an experimental model of relevance to human biology. The spectral library and raw data are freely accessible in the MassIVE repository (MSV000083199).
Collapse
Affiliation(s)
- Pawel Palmowski
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 4EP, Tyne and Wear, UK
| | - Rachael Watson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 4EP, Tyne and Wear, UK
| | - G Nicholas Europe-Finner
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 4EP, Tyne and Wear, UK
| | | | - Andrew Porter
- Newcastle University Protein and Proteomic Analysis, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Achim Treumann
- Newcastle University Protein and Proteomic Analysis, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Michael J Taggart
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 4EP, Tyne and Wear, UK
| |
Collapse
|
15
|
Sequential window acquisition of all theoretical fragments versus information dependent acquisition for suspected-screening of pharmaceuticals in sediments and mussels by ultra-high pressure liquid chromatography-quadrupole time-of-flight-mass spectrometry. J Chromatogr A 2019; 1595:81-90. [DOI: 10.1016/j.chroma.2019.02.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 01/28/2023]
|
16
|
Wu W, Dai RT, Bendixen E. Comparing SRM and SWATH Methods for Quantitation of Bovine Muscle Proteomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1608-1618. [PMID: 30624930 DOI: 10.1021/acs.jafc.8b05459] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mass spectrometry (MS) has become essential for efficient and accurate quantification of proteins and proteomes and, thus, a key technology throughout all biosciences. However, validated MS methods are still scarce for meat quality research applications. The objective of this work was to develop and compare two targeted proteomic methods, namely, selected reaction monitoring (SRM) and sequential window acquisition of all theoretical spectra (SWATH), for the quantification of 11 bovine muscle proteins that may be indicators of meat color. Both methods require evaluation of spectra from proteotypic and quantotypic peptides, and we here report our evaluation of which peptides and MS parameters are best suited for robust quantification of these 11 proteins. We observed that the SRM approach provides better reproducibility, linearity, and sensitivity than SWATH and is therefore ideal for targeted quantification of low-abundance proteins, while the SWATH approach provides a more time-efficient method for targeted protein quantification of high-abundance proteins and, additionally, supports the search for novel biomarkers.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Nutritional Engineering , China Agricultural University , No. 17 Qinghua East Road , Haidian District, Beijing 100083 , P. R. China
- Department of Molecular Biology and Genetics, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus , Denmark
| | - Rui-Tong Dai
- College of Food Science and Nutritional Engineering , China Agricultural University , No. 17 Qinghua East Road , Haidian District, Beijing 100083 , P. R. China
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus , Denmark
| |
Collapse
|
17
|
Ding M, Guo D, Wu J, Ye X, Zhang Y, Sha F, Jiang W, Bi H. Effects of glucocorticoid on the eye development in guinea pigs. Steroids 2018; 139:1-9. [PMID: 30244069 DOI: 10.1016/j.steroids.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Abstract
Glucocorticoid (GC) has been widely used in clinic. However, the effect of GC on normal and myopic development of eyes is still unknown. In this study, 3-week-old guinea pigs were randomly divided into four groups: No-Lens (control), GC+No-Lens, negative lens-induced myopia (LIM), and GC+LIM. To induce myopia, right eyes were covered with a -10 D lens in GC+LIM and LIM groups. GC+No-Lens and GC+LIM groups received intraperitoneal injections of hydrocortisone (10 mg/kg) once daily for 2 weeks, and then received intragastric hydrocortisone (32.5 mg/kg) every other day for the next 4 weeks, while No-Lens (control) and LIM groups were injected intraperitoneally with saline for 2 weeks, and then given saline by intragastric administertion for the next 4 weeks. Several parameters were assessed: ocular axial length and refractive error, sclera thickness, matrix metalloprotein-2 (MMP-2) and tissue inhibitor metalloprotease-2 (TIMP-2) expressions and localization of the posterior sclera, plasma concentrations of free triiodothyronine (FT3), free thyroxine (FT4), testosterone (T), and oestradiol (E2). Results indicated that: (1) in normal eye development, hydrocortisone could inhibit both the axial elongation and the myopic shift; whereas (2) in LIM eye development, hydrocortisone (a) enhanced the axial elongation, myopic shift and sclera thinning; (b) enhanced the MMP-2 expression and decreased TIMP-2 expression, and (c) elevated the plasma concentration of E2 but decreased the levels of FT3, FT4, and T. In conclusion, glucocorticoid may influence both normal and LIM eye development. The balance of the hormones is fundamental for the eye development.
Collapse
Affiliation(s)
- Meihua Ding
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Jianfeng Wu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Xiang Ye
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Yueying Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250002, China
| | - Fang Sha
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Wenjun Jiang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan 250002, China.
| |
Collapse
|
18
|
Shan SW, Tse DYY, Zuo B, To CH, Liu Q, McFadden SA, Chun RKM, Bian J, Li KK, Lam TC. Data on differentially expressed proteins in retinal emmetropization process in guinea pig using integrated SWATH-based and targeted-based proteomics. Data Brief 2018; 21:1750-1755. [PMID: 30505911 PMCID: PMC6249517 DOI: 10.1016/j.dib.2018.08.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/24/2018] [Indexed: 11/20/2022] Open
Abstract
Myopia is generally regarded as a failure of normal emmetropization process, however, its underlying molecular mechanisms are unclear. Retinal protein profile changes using integrated SWATH and MRM-HR MS were studied in guinea pigs at 3- and 21-days of age, where the axial elongation was significantly detected. Differential proteins expressions were identified, and related to pathways which are important in postnatal development in retina, proliferation, breakdown of glycogen-energy and visual phototransduction. These results are significant as key retinal protein players and pathways that underlying emmetropization can be discovered. All raw data generated from IDA and SWATH acquisitions were accepted and published in the Peptide Atlas public repository (http://www.peptideatlas.org/) for general release (Data ID PASS00746). A more comprehensive analysis of this data can be obtained in the article “Integrated SWATH-based and targeted-based proteomics provide insights into the retinal emmetropization process in guinea pig” in Journal of Proteomics (Shan et al., 2018) [1].
Collapse
Affiliation(s)
- Sze Wan Shan
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, the Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Dennis Yan-Yin Tse
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, the Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bing Zuo
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, the Hong Kong Polytechnic University, Kowloon, Hong Kong.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Chi Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, the Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Quan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Sally A McFadden
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Rachel Ka-Man Chun
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, the Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jingfang Bian
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, the Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - King Kit Li
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, the Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, the Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
19
|
Riddell N, Faou P, Crewther SG. Short term optical defocus perturbs normal developmental shifts in retina/RPE protein abundance. BMC DEVELOPMENTAL BIOLOGY 2018; 18:18. [PMID: 30157773 PMCID: PMC6116556 DOI: 10.1186/s12861-018-0177-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myopia (short-sightedness) affects approximately 1.4 billion people worldwide, and prevalence is increasing. Animal models induced by defocusing lenses show striking similarity with human myopia in terms of morphology and the implicated genetic pathways. Less is known about proteome changes in animals. Thus, the present study aimed to improve understanding of protein pathway responses to lens defocus, with an emphasis on relating expression changes to no lens control development and identifying bidirectional and/or distinct pathways across myopia and hyperopia (long-sightedness) models. RESULTS Quantitative label-free proteomics and gene set enrichment analysis (GSEA) were used to examine protein pathway expression in the retina/RPE of chicks following 6 h and 48 h of myopia induction with - 10 dioptre (D) lenses, hyperopia induction with +10D lenses, or normal no lens rearing. Seventy-one pathways linked to cell development and neuronal maturation were differentially enriched between 6 and 48 h in no lens chicks. The majority of these normal developmental changes were disrupted by lens-wear (47 of 71 pathways), however, only 11 pathways displayed distinct expression profiles across the lens conditions. Most notably, negative lens-wear induced up-regulation of proteins involved in ATP-driven ion transport, calcium homeostasis, and GABA signalling between 6 and 48 h, while the same proteins were down-regulated over time in normally developing chicks. Glutamate and bicarbonate/chloride transporters were also down-regulated over time in normally developing chicks, and positive lens-wear inhibited this down-regulation. CONCLUSIONS The chick retina/RPE proteome undergoes extensive pathway expression shifts during normal development. Most of these pathways are further disrupted by lens-wear. The identified expression patterns suggest close interactions between neurotransmission (as exemplified by increased GABA receptor and synaptic protein expression), cellular ion homeostasis, and associated energy resources during myopia induction. We have also provided novel evidence for changes to SLC-mediated transmembrane transport during hyperopia induction, with potential implications for signalling at the photoreceptor-bipolar synapse. These findings reflect a key role for perturbed neurotransmission and ionic homeostasis in optically-induced refractive errors, and are predicted by our Retinal Ion Driven Efflux (RIDE) model.
Collapse
Affiliation(s)
- Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Plenty Rd., Bundoora, Melbourne, VIC, 3083, Australia.
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Plenty Rd., Bundoora, Melbourne, VIC, 3083, Australia
| |
Collapse
|