1
|
Kong Z, Pan H, Wang Z, Abla A, Wei Y. Nitidine Chloride Alleviates Hypoxic Stress via PINK1-Parkin-Mediated Mitophagy in the Mammary Epithelial Cells of Milk Buffalo. Animals (Basel) 2024; 14:3016. [PMID: 39457946 PMCID: PMC11505235 DOI: 10.3390/ani14203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia in the mammary gland epithelial cells of milk buffalo (BMECs) can affect milk yield and composition, and it can even cause metabolic diseases. Nitidine chloride (NC) is a natural alkaloid with antioxidant properties that can scavenge excessive reactive oxygen species (ROS). However, the effect of NC on the hypoxic injury of BMECs and its molecular mechanisms are still unknown. Here, an immunofluorescence assay, transmission electron microscopy (TEM), and flow cytometry, combined with untargeted metabolomics, were used to investigate the protective effect of NC on hypoxic stress injury in BMECs. It was found that NC can significantly reduce cell activity (p < 0.05) and inhibit cellular oxidative stress (p < 0.05) and cell apoptosis (p < 0.05). A significant decrease in mitophagy mediated by the PINK1-Parkin pathway was observed after NC pretreatment (p < 0.05). In addition, a metabolic pathway enrichment analysis demonstrated that the mechanisms of NC against hypoxic stress may be related to the downregulation of pathways involving aminoacyl tRNA biosynthesis; arginine and proline metabolism; glycine, serine, and threonine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; and phenylalanine metabolism. Thus, NC has a protective effect on hypoxic mitochondria, and it can regulate amino acid metabolism in response to hypoxic stress. The present study provides a reference for the application of nitidine chloride to regulate the mammary lactation function of milk buffalo.
Collapse
Affiliation(s)
- Zhiwei Kong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Haichang Pan
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Zi Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Alida Abla
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Department of Animal Sciences, Guangxi University, Nanning 530004, China; (Z.K.); (H.P.); (Z.W.); (A.A.)
| | - Yingming Wei
- Institute for Agricultural and Animal Husbandry Industry Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
3
|
Zinga MM, Abdel-Shafy E, Melak T, Vignoli A, Piazza S, Zerbini LF, Tenori L, Cacciatore S. KODAMA exploratory analysis in metabolic phenotyping. Front Mol Biosci 2023; 9:1070394. [PMID: 36733493 PMCID: PMC9887019 DOI: 10.3389/fmolb.2022.1070394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
KODAMA is a valuable tool in metabolomics research to perform exploratory analysis. The advanced analytical technologies commonly used for metabolic phenotyping, mass spectrometry, and nuclear magnetic resonance spectroscopy push out a bunch of high-dimensional data. These complex datasets necessitate tailored statistical analysis able to highlight potentially interesting patterns from a noisy background. Hence, the visualization of metabolomics data for exploratory analysis revolves around dimensionality reduction. KODAMA excels at revealing local structures in high-dimensional data, such as metabolomics data. KODAMA has a high capacity to detect different underlying relationships in experimental datasets and correlate extracted features with accompanying metadata. Here, we describe the main application of KODAMA exploratory analysis in metabolomics research.
Collapse
Affiliation(s)
- Maria Mgella Zinga
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Ebtesam Abdel-Shafy
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- National Research Centre, Cairo, Egypt
| | - Tadele Melak
- Computation Biology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of clinical chemistry, University of Gondar, Gondar, Ethiopia
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Silvano Piazza
- Computation Biology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luiz Fernando Zerbini
- Cancer Genomics, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Rajabi N, Mohammadnejad F, Doustvandi MA, Shadbad MA, Amini M, Tajalli H, Mokhtarzadeh A, Baghbani E, Silvestris N, Baradaran B. Photodynamic therapy with zinc phthalocyanine enhances the anti-cancer effect of tamoxifen in breast cancer cell line: Promising combination treatment against triple-negative breast cancer? Photodiagnosis Photodyn Ther 2022; 41:103212. [PMID: 36436735 DOI: 10.1016/j.pdpdt.2022.103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Photodynamic therapy (PDT) is a light-based anti-neoplastic therapeutic approach. Growing evidence indicates that combining conventional anti-cancer therapies with PDT can be a promising approach to treat malignancies. Herein, we aimed to investigate anti-cancer effects of the combination treatment of zinc phthalocyanine (ZnPc)-PDT with tamoxifen (TA) on MDA-MB-231 cells (as a triple-negative breast cancer (TNBC) cell line). For this purpose, we investigated the cytotoxicity of TA and ZnPc-PDT on MDA-MB-231 cells performing the MTT assay. The effect of TA and ZnPc-PDT on the apoptosis of MDA-MB-231 cells was studied using Annexin V/PI and DAPI staining. The wound-healing assay, and colony formation assay were performed to study the effect of TA and ZnPc-PDT on the migration, and clonogenicity of MDA-MB-231 cells, respectively. The qRT-PCR was done to study the gene expression of caspase-8, caspase-9, caspase-3, ZEB1, ROCK1, SNAIL1, CD133, CD44, SOX2, and ABCG2 (ATP-binding cassette sub-family G member 2). Based on our results, monotherapies with TA and ZnPc-PDT can remarkably increase cell cytotoxicity effects, stimulate apoptosis via downregulating Bcl-2 and upregulating caspase-3 and caspase-9, inhibit migration via downregulating SNAIL1 and ZEB1, and suppress clonogenicity via downregulating SOX2 and CD44 in MDA-MB-231 cells. Besides, these monotherapies can downregulate the expression of ABCG2 in MDA-MB-231 cells. Nevertheless, the combination treatment can potentiate the above-mentioned anti-cancer effects compared to monotherapy with TA. Of interest, the combined treatment of TA with ZnPc-PDT can synergically increase cell cytotoxicity effects on MDA-MB-231 cells. In fact, synergistic effects were estimated by calculation of Combination Index (CI); that synergistic outcomes were observed in all groups. Also, this combination treatment can significantly upregulate the caspase-8 gene expression and downregulate ROCK1 and CD133 gene expression in MDA-MB-231 cells. Overall, our results show that ZnPc-PDT can more sensitize the MDA-MB-231 cells to TA treatment. Based on our knowledge and experiment, the synergistic effects of ZnPc-PDT and TA deserve further evaluation in cancer research.
Collapse
Affiliation(s)
- Neda Rajabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Amin Doustvandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Tajalli
- Biophotonic Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran; Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Pillai MS, Paritala ST, Shah RP, Sharma N, Sengupta P. Cutting-edge strategies and critical advancements in characterization and quantification of metabolites concerning translational metabolomics. Drug Metab Rev 2022; 54:401-426. [PMID: 36351878 DOI: 10.1080/03602532.2022.2125987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite remarkable progress in drug discovery strategies, significant challenges are still remaining in translating new insights into clinical applications. Scientists are devising creative approaches to bridge the gap between scientific and translational research. Metabolomics is a unique field among other omics techniques for identifying novel metabolites and biomarkers. Fortunately, characterization and quantification of metabolites are becoming faster due to the progress in the field of orthogonal analytical techniques. This review detailed the advancement in the progress of sample preparation, and data processing techniques including data mining tools, database, and their quality control (QC). Advances in data processing tools make it easier to acquire unbiased data that includes a diverse set of metabolites. In addition, novel breakthroughs including, miniaturization as well as their integration with other devices, metabolite array technology, and crystalline sponge-based method have led to faster, more efficient, cost-effective, and holistic metabolomic analysis. The use of cutting-edge techniques to identify the human metabolite, including biomarkers has proven to be advantageous in terms of early disease identification, tracking the progression of illness, and possibility of personalized treatments. This review addressed the constraints of current metabolomics research, which are impeding the facilitation of translation of research from bench to bedside. Nevertheless, the possible way out from such constraints and future direction of translational metabolomics has been conferred.
Collapse
Affiliation(s)
- Megha Sajakumar Pillai
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sree Teja Paritala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
6
|
Tőkés AM, Vári-Kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022; 12:850401. [PMID: 35433453 PMCID: PMC9008716 DOI: 10.3389/fonc.2022.850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is characterized by considerable metabolic diversity. A relatively high percentage of patients diagnosed with breast carcinoma do not respond to standard-of-care treatment, and alteration in metabolic pathways nowadays is considered one of the major mechanisms responsible for therapeutic resistance. Consequently, there is an emerging need to understand how metabolism shapes therapy response, therapy resistance and not ultimately to analyze the metabolic changes occurring after different treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts, drug resistance is still frequent in many types of breast cancer, decreasing patients’ survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex system to enable scientists to design novel treatment strategies that target different aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing environmental context, differences in nutrient use among different cell types, the cooperative or competitive relationships between cells pose additional challenges in profound analyzes of metabolic changes in different breast carcinoma subtypes and treatment protocols. Delineating the contribution of metabolic pathways to tumor differentiation, progression, and resistance to different drugs is also the focus of research. The present review discusses the changes in glucose and fatty acid pathways associated with the most frequently applied chemotherapeutic drugs in breast cancer, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Mária Tőkés
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
- *Correspondence: Anna Mária Tőkés,
| | - Stefan Vári-Kakas
- Department of Computers and Information Technology, Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
| | - Beáta Törőcsik
- Department of Biochemistry, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|
7
|
Ren L, Zhou H, Lei L, Zhang Y, Cai H, Wang X. Long non-coding RNA FOXD3 antisense RNA 1 augments anti-estrogen resistance in breast cancer cells through the microRNA-363/ trefoil factor 1/ phosphatidylinositol 3-kinase/protein kinase B axis. Bioengineered 2021; 12:5266-5278. [PMID: 34424807 PMCID: PMC8806484 DOI: 10.1080/21655979.2021.1962694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long non-coding RNA (lncRNA) FOXD3 antisense RNA 1 (FOXD3-AS1) has been reported to participate in multiple processes that contribute toward the development of cancer. The present study aimed to explore the effect of lncRNA FOXD3-AS1 on anti-estrogen resistance in breast cancer (BC) cells. FOXD3-AS1 was found to be highly expressed in BC cell lines. Moreover, FOXD3-AS1 was highly expressed in estrogen receptor-negative (ER-) cells compared to the ER-positive (ER+) cells. FOXD3-AS1 overexpression in T47D and MCF-7 (ER+) cells enhanced the resistance of cells to tamoxifen (TMX), whereas FOX3-AS1 downregulation reduced the TMX resistance in MDA-MB-231 (ER-) cells. Similar results were reproduced in vivo that FOXD3-AS1 inhibition reduced the growth of xenograft tumors formed by MDA-MB-231 cells following TMX treatment whereas FOXD3-AS1 overexpression in T47D cells facilitated tumor growth. The bioinformatic analysis and luciferase assays indicated that FOXD3-AS1 sponged microRNA-363 (miR-363) to restore expression of trefoil factor 1 (TFF1) mRNA. Overexpression of miR-363 reduced T47D cell proliferation induced by FOXD3-AS1, whereas overexpression of TFF1 restored growth of MDA-MB-231 cells reduced after FOXD3-AS1 silencing. The phosphorylation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) was increased by FOXD3-AS1 but attenuated by miR-363. Inhibition of PI3K/Akt blocked the role of FOXD3-AS1 and reduced the TMX resistance in T47D and MCF-7 cells. Taken together, the present study suggested that FOXD3-AS1 sponges miR-363 to upregulate TFF1 expression, leading to PI3K/Akt signaling activation and anti-estrogen resistance in BC cells.
Collapse
Affiliation(s)
- Lili Ren
- Department of Integration of Traditional Chinese and Western Medicine, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, P.R. China
| | - Huanhuan Zhou
- Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, P.R. China
| | - Lei Lei
- Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, P.R. China
| | - Yongjun Zhang
- Department of Integration of Traditional Chinese and Western Medicine, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, P.R. China
| | - Hu Cai
- Department of Integration of Traditional Chinese and Western Medicine, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, P.R. China
| | - Xiaojia Wang
- Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
8
|
Chen L, Carlton M, Chen X, Kaur N, Ryan H, Parker TJ, Lin Z, Xiao Y, Zhou Y. Effect of fibronectin, FGF-2, and BMP4 in the stemness maintenance of BMSCs and the metabolic and proteomic cues involved. Stem Cell Res Ther 2021; 12:165. [PMID: 33676544 PMCID: PMC7936451 DOI: 10.1186/s13287-021-02227-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/14/2021] [Indexed: 02/08/2023] Open
Abstract
Background Growing evidence suggests that the pluripotent state of mesenchymal stem cells (MSCs) relies on specific local microenvironmental cues such as adhesion molecules and growth factors. Fibronectin (FN), fibroblast growth factor 2 (FGF2), and bone morphogenetic protein 4 (BMP4) are the key players in the regulation of stemness and lineage commitment of MSCs. Therefore, this study was designed to investigate the pluripotency and multilineage differentiation of bone marrow-derived MSCs (BMSCs) with the introduction of FN, FGF-2, and BMP4 and to identify the metabolic and proteomic cues involved in stemness maintenance. Methods To elucidate the stemness of BMSCs when treated with FN, FGF-2, and BMP4, the pluripotency markers of OCT4, SOX2, and c-MYC in BMSCs were monitored by real-time PCR and/or western blot. The nuclear translocation of OCT4, SOX2, and c-MYC was investigated by immunofluorescence staining. Multilineage differentiation of the treated BMSCs was determined by relevant differentiation markers. To identify the molecular signatures of BMSC stemness, gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and bioinformatics analysis were utilized to determine the metabolite and protein profiles associated with stem cell maintenance. Results Our results demonstrated that the expression of stemness markers decreased with BMSC passaging, and the manipulation of the microenvironment with fibronectin and growth factors (FGF2 and BMP4) can significantly improve BMSC stemness. Of note, we revealed 7 differentially expressed metabolites, the target genes of these metabolites may have important implications in the maintenance of BMSCs through their effects on metabolic activity, energy production, and potentially protein production. We also identified 21 differentially abundant proteins, which involved in multiple pathways, including metabolic, autophagy-related, and signaling pathways regulating the pluripotency of stem cells. Additionally, bioinformatics analysis comfirned the correlation between metabolic and proteomic profiling, suggesting that the importance of metabolism and proteome networks and their reciprocal communication in the preservation of stemness. Conclusions These results indicate that the culture environment supplemented with the culture cocktail (FN, FGF2, and BMP4) plays an essential role in shaping the pluripotent state of BMSCs. Both the metabolism and proteome networks are involved in this process and the modulation of cell-fate decision making. All these findings may contribute to the application of MSCs for regenerative medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02227-7.
Collapse
Affiliation(s)
- Lingling Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology & Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Morgan Carlton
- Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Xiaodan Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology & Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Navdeep Kaur
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Hollie Ryan
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Tony J Parker
- Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology & Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China.
| | - Yin Xiao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology & Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China. .,Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia.
| | - Yinghong Zhou
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia.
| |
Collapse
|
9
|
Klupczynska A, Misiura M, Miltyk W, Oscilowska I, Palka J, Kokot ZJ, Matysiak J. Development of an LC-MS Targeted Metabolomics Methodology to Study Proline Metabolism in Mammalian Cell Cultures. Molecules 2020; 25:molecules25204639. [PMID: 33053735 PMCID: PMC7587214 DOI: 10.3390/molecules25204639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022] Open
Abstract
A growing interest in metabolomics studies of cultured cells requires development not only untargeted methods capable of fingerprinting the complete metabolite profile but also targeted methods enabling the precise and accurate determination of a selected group of metabolites. Proline metabolism affects many crucial processes at the cellular level, including collagen biosynthesis, redox balance, energetic processes as well as intracellular signaling. The study aimed to develop a robust and easy-to-use targeted metabolomics method for the determination of the intracellular level of proline and the other two amino acids closely related to proline metabolism: glutamic acid and arginine. The method employs hydrophilic interaction liquid chromatography followed by high-resolution, accurate-mass mass spectrometry for reliable detection and quantification of the target metabolites in cell lysates. The sample preparation consisted of quenching by the addition of ice-cold methanol and subsequent cell scraping into a quenching solution. The method validation showed acceptable linearity (r > 0.995), precision (%RSD < 15%), and accuracy (88.5–108.5%). Pilot research using HaCaT spontaneously immortalized human keratinocytes in a model for wound healing was performed, indicating the usefulness of the method in studies of disturbances in proline metabolism. The developed method addresses the need to determine the intracellular concentration of three key amino acids and can be used routinely in targeted mammalian cell culture metabolomics research.
Collapse
Affiliation(s)
- Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland;
- Correspondence: ; Tel.: +48-61-854-66-16
| | - Magdalena Misiura
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.M.); (W.M.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.M.); (W.M.)
| | - Ilona Oscilowska
- Department of Medicinal Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (I.O.); (J.P.)
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (I.O.); (J.P.)
| | - Zenon J. Kokot
- Faculty of Health Sciences, State University of Applied Sciences in Kalisz, 62-800 Kalisz, Poland;
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland;
| |
Collapse
|
10
|
Development, Characterization and In Vitro Evaluation of Paclitaxel and Anastrozole Co-Loaded Liposome. Processes (Basel) 2020. [DOI: 10.3390/pr8091110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) and anastrozole (ANA) have been frequently applied in breast cancer treatment. PTX is well-known for its anti-proliferative effect meanwhile ANA has just been discovered to act as an estrogen receptor α (ERα) ligand. The combination therapy of PTX and ANA is expected to improve treating efficiency, as ANA would act as a ligand binding with the ERα gene expressed in breast cancer cells and thereafter PTX would inhibit the division and cause death to those cancer cells. In this study, liposome-based nanocarriers (LP) were developed for co-encapsulation of PTX and ANA to improve the efficacy of the combined drugs in an Estrogen receptor-responsive breast cancer study. PTX-ANA co-loaded LP was prepared using thin lipid film hydration method and was characterized for morphology, size, zeta potential, drug encapsulation and in vitro drug release. In addition, cell proliferation (WST assay) and IN Cell Analyzer were used for in vitro cytotoxicity studies on a human breast cancer cell line (MCF-7). Results showed that the prepared LP and PTX-ANA-LP had spherical vesicles, with a mean particle size of 170.1 ± 13.5 nm and 189.0 ± 22.1 nm, respectively. Controlled and sustained releases were achieved at 72 h for both of the loaded drugs. The in vitro cytotoxicity study found that the combined drugs showed higher toxicity than each single drug separately. These results suggested a new approach to breast cancer treatment, consisting of the combination therapy of PTX and ANA in liposomes based on ER response.
Collapse
|