1
|
Zhang D, Yue Y, Yuan C, An X, Guo T, Chen B, Liu J, Lu Z. DIA-Based Proteomic Analysis Reveals MYOZ2 as a Key Protein Affecting Muscle Growth and Development in Hybrid Sheep. Int J Mol Sci 2024; 25:2975. [PMID: 38474221 DOI: 10.3390/ijms25052975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Hybridization of livestock can be used to improve varieties, and different hybrid combinations produce unique breeding effects. In this study, male Southdown and Suffolk sheep were selected to hybridize with female Hu sheep to explore the effects of male parentage on muscle growth and the development of offspring. Using data-independent acquisition technology, we identified 119, 187, and 26 differentially abundant proteins (DAPs) between Hu × Hu (HH) versus Southdown × Hu (NH), HH versus Suffolk × Hu (SH), and NH versus SH crosses. Two DAPs, MYOZ2 and MYOM3, were common to the three hybrid groups and were mainly enriched in muscle growth and development-related pathways. At the myoblast proliferation stage, MYOZ2 expression decreased cell viability and inhibited proliferation. At the myoblast differentiation stage, MYOZ2 expression promoted myoblast fusion and enhanced the level of cell fusion. These findings provide new insights into the key proteins and metabolic pathways involved in the effect of male parentage on muscle growth and the development of hybrid offspring in sheep.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
2
|
Wang S, Ge S, Chen Y, Zhou F, Wang J, Chen L, Chen Y, Yu R, Huang L. Acute and subacute hepatotoxicity of genipin in mice and its potential mechanism. Heliyon 2023; 9:e21834. [PMID: 38027867 PMCID: PMC10663932 DOI: 10.1016/j.heliyon.2023.e21834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Gardenia, as a medicinal and edible herb, has the pharmacological activity of protecting the liver and cholagogue, but the hepatotoxicity induced by the chemical component genipin (GP) limits its application. The aim of this study was to evaluate the acute and subacute hepatotoxicity of genipin in normal mice and mice with α-naphthalene isothiocyanate (ANIT)-induced liver injury. The results of the acute study showed that the LD50 of genipin was 510 mg/kg. Genipin exhibited hepatotoxicity in normal and jaundiced mice at doses of 125 mg/kg, 250 mg/kg, and 500 mg/kg, which increased with dose. In a 28-day subacute study, the 50 mg/kg and 100 mg/kg dose groups showed some pharmacodynamic effects at 7 days but exhibited hepatotoxicity that increased with time and improved after drug withdrawal. In addition, based on proteomics, the mechanism of liver injury induced by genipin may be related to the disruption of the UDP-glucuronosyltransferase system and cytochrome P450 enzyme activity. In conclusion, this study showed that genipin hepatotoxicity was time- and dose dependent, but it is worth mentioning that hepatotoxicity was reversible. It is hoped that this study will provide a scientific basis for circumventing the adverse effects of genipin.
Collapse
Affiliation(s)
- Shuaikang Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Shuchao Ge
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yaohui Chen
- Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, 30012, China
| | - Feng Zhou
- Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, 30012, China
| | - Jingjing Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Liping Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yinfang Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
- Jiangxi Provincial Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Riyue Yu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
- Jiangxi Provincial Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Liping Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
- Jiangxi Provincial Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| |
Collapse
|
3
|
Zhang S, Zhang J, Cao C, Cai Y, Li Y, Song Y, Bao X, Zhang J. Effects of Different Rearing Systems on Lueyang Black-Bone Chickens: Meat Quality, Amino Acid Composition, and Breast Muscle Transcriptome. Genes (Basel) 2022; 13:genes13101898. [PMID: 36292783 PMCID: PMC9601429 DOI: 10.3390/genes13101898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The quality of poultry products depends on genotype, rearing system, and environment. The aim of this study was to investigate the effects of different rearing systems on meat quality, amino acid composition, and breast muscle transcriptome from Lueyang black-bone chickens. Lueyang black-bone chickens (n = 900) were randomly divided into three groups (cage, flat-net, and free-range groups), with three replicates per group (100 chickens per replicate). At 16 weeks, a total of 36 healthy chickens (six males and six females per group) were collected, and their breast muscles were sampled to detect meat quality parameters, amino acid composition, and fatty acid contents. Furthermore, breast muscles from six random hens in each group were used for RNA-seq analysis. The results revealed that the values of pH, shear force, inosine monophosphate (IMP), palmitic acid, and linoleic acid in the free-range group were significantly higher than those in the caged group (p < 0.05). Fat content in the free-range group was significantly lower than in the caged and flat-net groups (p < 0.05). Glutamate (Glu) levels, the amino acid crucial for the umami taste, was significantly higher in the free-range group than in the caged group (p < 0.05). Meanwhile, there was no significant difference between the free-range and flat-net groups (p > 0.05). The breast muscle transcriptome results showed that there were 291, 131, and 387 differently expressed genes (DEGs) among the three comparison groups (caged vs. free-range, flat-net vs. caged, and flat-net vs. free-range, respectively) that were mainly related to muscle development and amino acid metabolism pathways. To validate the accuracy of the transcriptome data, eight genes (GOS2, ASNS, NMRK2, GADL1, SMTNL2, SLC7A5, AMPD1, and GLUL) which relate to fat deposition, skeletal muscle function, and flavor formation were selected for Real-time Quantitative PCR (RT-qPCR) verification. In conclusion, these results suggested that rearing systems significantly influenced the meat quality and gene expression of Lueyang black-bone chickens. All the data proved that free-range and flat-net systems may provide better flavor to consumers by affecting the deposition of flavor substances and the expression of related genes. These findings will provide a valuable theoretical basis for the rearing system selection in the poultry industry.
Collapse
|
4
|
Influence of feed restriction and subsequent recovery on lactating Charolais cows. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zhao L, Zhang D, Li X, Zhang Y, Zhao Y, Xu D, Cheng J, Wang J, Li W, Lin C, Yang X, Ma Z, Cui P, Zhang X, Wang W. Comparative proteomics reveals genetic mechanisms of body weight in Hu sheep and Dorper sheep. J Proteomics 2022; 267:104699. [PMID: 35995385 DOI: 10.1016/j.jprot.2022.104699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Body weight (BW) is a critical economic trait for meat production in sheep, and it is a complex trait affected by numerous elements. The aim of this study was to investigate the genetic mechanisms of sheep BW by a label-free proteomics approach. The result showed, a total of 27, 14, 61, and 65 differentially abundant proteins (DAPs) were identified in the Hu_HBW vs. Hu_LBW, DP_HBW vs. DP_LBW, Hu_HBW vs. DP_HBW, and Hu_LBW vs. DP_LBW comparisons, respectively. Five proteins (including ILK, AHCYL2, MLIP, CYB5A, and SMTNL1) related to fat synthesis and muscle development were detected in the Hu sheep group. In the Dorper sheep group, the screened DAPs strictly related to muscle development and fat synthesis were significantly enriched in MAP kinase activity (MAPK12), Arachidonic acid metabolism, and Steroid hormone biosynthesis (PGFS, LOC101107119) pathways. Several DAPs related to immune responses (SERPINA1, FGG, SERPINC1, and LOC101108131), fat deposition (APOH, GC, AHSG, SKP1, ACSL1, ACAT1, and ACADS), and muscle development (LMOD3 and LRRC39) were detected in the Hu vs. Dorper sheep comparison. These analyses indicated that the BW of sheep is regulated via a variety of pathways, and these DAPs can be further investigated as candidate markers for predicting the BW of sheep. SIGNIFICANCE: Body weight is one of the key traits in sheep and involves multiple coordinated regulatory mechanisms, but the genetic mechanism of BW is still unclear in sheep. In the current study, the label-free method was used to identify the proteins and pathways related to BW using LT muscle of Hu sheep and Dorper sheep with different BW. These findings will provide new candidate proteins and vital pathways into the molecular mechanisms involved growth traits in sheep.
Collapse
Affiliation(s)
- Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China.
| |
Collapse
|
6
|
Haq ZU, Saleem A, Khan AA, Dar MA, Ganaie AM, Beigh YA, Hamadani H, Ahmad SM. Nutrigenomics in livestock sector and its human-animal interface-a review. Vet Anim Sci 2022; 17:100262. [PMID: 35856004 PMCID: PMC9287789 DOI: 10.1016/j.vas.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nutrigenomics unfolds the link between nutrition and gene expression for productivity.expression profile of intramuscular. Nutrigenomics helps scientists discover genes and DNA in each animal's cell or tissue by assisting them in selecting nutrients. It brings out the importance of micronutrition for increasing animal production. Nutrigenomics integrates nutrition, molecular biology, genomics, bioinformatics, molecular medicine, and epidemiology.
Noncommunicable diseases such as cardiovascular disease, obesity, diabetes, and cancer now outnumber all other health ailments in humans globally due to abrupt changes in lifestyle following the industrial revolution. The industrial revolution has also intensified livestock farming, resulting in an increased demand for productivity and stressed animals. The livestock industry faces significant challenges from a projected sharp increase in global food and high animal protein demand. Nutrition genomics holds great promise for the future as its advances have opened up a whole new world of disease understanding and prevention. Nutrigenomics is the study of the interactions between genes and diet. It investigates molecular relationships between nutrients and genes to identify how even minor modifications could potentially alter animal and human health/performance by using techniques like proteomics, transcriptomics, metabolomics, and lipidomics. Dietary modifications mostly studied in livestock focus mainly on health and production traits through protein, fat, mineral, and vitamin supplementation changes. Nutrigenomics meticulously selects nutrients for fine-tuning the expression of genes that match animal/human genotypes for better health, productivity, and the environment. As a step forward, nutrigenomics integrates nutrition, molecular biology, genomics, bioinformatics, molecular medicine, and epidemiology to better understand the role of food as an epigenetic factor in the occurrence of these diseases. This review aims to provide a comprehensive overview of the fundamental concepts, latest advances, and studies in the field of nutrigenomics, emphasizing the interaction of diet with gene expression, and how it relates to human and animal health along with its human-animal interphase.
Collapse
|
7
|
Chakraborty D, Sharma N, Kour S, Sodhi SS, Gupta MK, Lee SJ, Son YO. Applications of Omics Technology for Livestock Selection and Improvement. Front Genet 2022; 13:774113. [PMID: 35719396 PMCID: PMC9204716 DOI: 10.3389/fgene.2022.774113] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/16/2022] [Indexed: 12/16/2022] Open
Abstract
Conventional animal selection and breeding methods were based on the phenotypic performance of the animals. These methods have limitations, particularly for sex-limited traits and traits expressed later in the life cycle (e.g., carcass traits). Consequently, the genetic gain has been slow with high generation intervals. With the advent of high-throughput omics techniques and the availability of multi-omics technologies and sophisticated analytic packages, several promising tools and methods have been developed to estimate the actual genetic potential of the animals. It has now become possible to collect and access large and complex datasets comprising different genomics, transcriptomics, proteomics, metabolomics, and phonemics data as well as animal-level data (such as longevity, behavior, adaptation, etc.,), which provides new opportunities to better understand the mechanisms regulating animals’ actual performance. The cost of omics technology and expertise of several fields like biology, bioinformatics, statistics, and computational biology make these technology impediments to its use in some cases. The population size and accurate phenotypic data recordings are other significant constraints for appropriate selection and breeding strategies. Nevertheless, omics technologies can estimate more accurate breeding values (BVs) and increase the genetic gain by assisting the section of genetically superior, disease-free animals at an early stage of life for enhancing animal productivity and profitability. This manuscript provides an overview of various omics technologies and their limitations for animal genetic selection and breeding decisions.
Collapse
Affiliation(s)
- Dibyendu Chakraborty
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, India
- *Correspondence: Neelesh Sharma, ; Young Ok Son,
| | - Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, India
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Young Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
- *Correspondence: Neelesh Sharma, ; Young Ok Son,
| |
Collapse
|
8
|
Liu D, Chen Z, Zhao W, Guo L, Sun H, Zhu K, Liu G, Shen X, Zhao X, Wang Q, Ma P, Pan Y. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits. BMC Genomics 2021; 22:747. [PMID: 34654366 PMCID: PMC8520274 DOI: 10.1186/s12864-021-08042-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Background Over several decades, a wide range of natural and artificial selection events in response to subtropical environments, intensive pasture and intensive feedlot systems have greatly changed the customary behaviour, appearance, and important economic traits of Shanghai Holstein cattle. In particular, the longevity of the Shanghai Holstein cattle population is generally short, approximately the 2nd to 3rd lactation. In this study, two complementary approaches, integrated haplotype score (iHS) and runs of homozygosity (ROH), were applied for the detection of selection signatures within the genome using genotyping by genome-reduced sequence data from 1092 cows. Results In total, 101 significant iHS genomic regions containing selection signatures encompassing a total of 256 candidate genes were detected. There were 27 significant |iHS| genomic regions with a mean |iHS| score > 2. The average number of ROH per individual was 42.15 ± 25.47, with an average size of 2.95 Mb. The length of 78 % of the detected ROH was within the range of 1–2 MB and 2–4 MB, and 99 % were shorter than 8 Mb. A total of 168 genes were detected in 18 ROH islands (top 1 %) across 16 autosomes, in which each SNP showed a percentage of occurrence > 30 %. There were 160 and 167 genes associated with the 52 candidate regions within health-related QTL intervals and 59 candidate regions within reproduction-related QTL intervals, respectively. Annotation of the regions harbouring clustered |iHS| signals and candidate regions for ROH revealed a panel of interesting candidate genes associated with adaptation and economic traits, such as IL22RA1, CALHM3, ITGA9, NDUFB3, RGS3, SOD2, SNRPA1, ST3GAL4, ALAD, EXOSC10, and MASP2. In a further step, a total of 1472 SNPs in 256 genes were matched with 352 cis-eQTLs in 21 tissues and 27 trans-eQTLs in 6 tissues. For SNPs located in candidate regions for ROH, a total of 108 cis-eQTLs in 13 tissues and 4 trans-eQTLs were found for 1092 SNPs. Eighty-one eGenes were significantly expressed in at least one tissue relevant to a trait (P value < 0.05) and matched the 256 genes detected by iHS. For the 168 significant genes detected by ROH, 47 gene-tissue pairs were significantly associated with at least one of the 37 traits. Conclusions We provide a comprehensive overview of selection signatures in Shanghai Holstein cattle genomes by combining iHS and ROH. Our study provides a list of genes associated with immunity, reproduction and adaptation. For functional annotation, the cGTEx resource was used to interpret SNP-trait associations. The results may facilitate the identification of genes relevant to important economic traits and can help us better understand the biological processes and mechanisms affected by strong ongoing natural or artificial selection in livestock populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08042-x.
Collapse
Affiliation(s)
- Dengying Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Zhenliang Chen
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Wei Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Longyu Guo
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Xiuping Shen
- Shanghai Agricultural Development Promotion Center, 200335, Shanghai, PR China
| | - Xiaoduo Zhao
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, 201901, Shanghai, P.R. China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, 310058, Hangzhou, PR China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, 310058, Hangzhou, PR China.
| |
Collapse
|