1
|
D'Onofrio F, Schirone M, Paparella A, Krasteva I, Tittarelli M, Pomilio F, Iannetti L, D'Alterio N, Luciani M. Stress Adaptation Responses of a Listeria monocytogenes 1/2a Strain via Proteome Profiling. Foods 2023; 12:foods12112166. [PMID: 37297410 DOI: 10.3390/foods12112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that is ubiquitous and largely distributed in food manufacturing environments. It is responsible for listeriosis, a disease that can lead to significant morbidity and fatality in immunocompromised patients, pregnant women, and newborns. Few reports have been published about proteome adaptation when L. monocytogenes is cultivated in stress conditions. In this study, we applied one-dimensional electrophoresis and 2D-PAGE combined with tandem mass spectrometry to evaluate proteome profiling in the following conditions: mild acid, low temperature, and high NaCl concentration. The total proteome was analyzed, also considering the case of normal growth-supporting conditions. A total of 1,160 proteins were identified and those related to pathogenesis and stress response pathways were analyzed. The proteins involved in the expression of virulent pathways when L. monocytogenes ST7 strain was grown under different stress conditions were described. Certain proteins, particularly those involved in the pathogenesis pathway, such as Listeriolysin regulatory protein and Internalin A, were only found when the strain was grown under specific stress conditions. Studying how L. monocytogenes adapts to stress can help to control its growth in food, reducing the risk for consumers.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
2
|
SecA2 Associates with Translating Ribosomes and Contributes to the Secretion of Potent IFN-β Inducing RNAs. Int J Mol Sci 2022; 23:ijms232315021. [PMID: 36499346 PMCID: PMC9736482 DOI: 10.3390/ijms232315021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Protein secretion plays a central role in modulating interactions of the human pathogen Listeria monocytogenes with its environment. Recently, secretion of RNA has emerged as an important strategy used by the pathogen to manipulate the host cell response to its advantage. In general, the Sec-dependent translocation pathway is a major route for protein secretion in L. monocytogenes, but mechanistic insights into the secretion of RNA by these pathways are lacking. Apart from the classical SecA1 secretion pathway, L. monocytogenes also encodes for a SecA paralogue (SecA2) which targets the export of a specific subset of proteins, some of which are involved in virulence. Here, we demonstrated that SecA2 co-sediments with translating ribosomes and provided evidence that it associates with a subset of secreted small non-coding RNAs (sRNAs) that induce high levels of IFN-β response in host cells. We found that enolase, which is translocated by a SecA2-dependent mechanism, binds to several sRNAs, suggesting a pathway by which sRNAs are targeted to the supernatant of L. monocytogenes.
Collapse
|
3
|
D'Onofrio F, Visciano P, Krasteva I, Torresi M, Tittarelli M, Pomilio F, Iannetti L, Di Febo T, Paparella A, Schirone M, Luciani M. Immunoproteome profiling of Listeria monocytogenes under mild acid and salt stress conditions. Proteomics 2022; 22:e2200082. [PMID: 35916071 DOI: 10.1002/pmic.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is one of the main foodborne pathogens worldwide. Although its response to stress conditions has been extensively studied, it is still present in the food processing environments and is a concern for consumers. To investigate how this microorganism adapts its proteome in mild stress conditions, a combined proteomics and bioinformatics approach was used to characterize the immunogenic protein profile of an ST7 strain that caused severe listeriosis outbreaks in central Italy. Extracted proteins were analyzed by immunoblotting using positive sera against L. monocytogenes and nLC-ESI-MS/MS, and all data were examined by five software to predict subcellular localization. Two hundred and twenty-six proteins were extracted from the bands of interest, 58 of which were classified as potential immunogenic antigens. Compared to control cells grown under optimal conditions, six proteins, some of which under-described, were expressed under mild acid and salt stress conditions and/or at 12°C. In particular, adaptation and shaping of the proteome mainly involved cell motility at 12°C without acid and salt stress, whereas the combination of the same temperature with mild acid and salt stress induced a response concerning carbohydrate metabolism, oxidative stress and DNA repair. Raw data are available via ProteomeXchange with identifier PXD033519. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| |
Collapse
|