1
|
Jiang C, Lin B, Ye X, Yu Y, Xu P, Peng C, Mou T, Yu X, Zhao H, Zhao M, Li Y, Zhang S, Chen X, Pan F, Shang D, Jin K, Lu J, Chen J, Yin J, Huang M. Graph convolutional network with attention mechanism improve major depressive depression diagnosis based on plasma biomarkers and neuroimaging data. J Affect Disord 2024; 360:336-344. [PMID: 38824965 DOI: 10.1016/j.jad.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking. METHODS In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance. RESULTS Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %. LIMITATIONS This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability. CONCLUSIONS In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.
Collapse
Affiliation(s)
- Chaonan Jiang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bo Lin
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China; School of Software Technology, Zhejiang University, Ningbo 315048, China
| | - Xinyi Ye
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Yiran Yu
- Management of Science with Artificial Intelligence, University of Nottingham Ningbo China, 315048, China
| | - Pengfeng Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chenxu Peng
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xinjian Yu
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haoyang Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Miaomiao Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xuanqiang Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Fen Pan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Desheng Shang
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianwei Yin
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
2
|
Fu L, Ren J, Lei X, Wang Y, Chen X, Zhang R, Li Q, Teng X, Guo C, Wu Z, Yu L, Wang D, Chen Y, Qin J, Yuan A, Zhang C. Association of anhedonia with brain-derived neurotrophic factor and interleukin-10 in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111023. [PMID: 38701878 DOI: 10.1016/j.pnpbp.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Anhedonia, a core symptom of major depressive disorder (MDD), manifests in two forms: anticipatory and consummatory, reflecting a diminished capacity to anticipate or enjoy pleasurable activities. Prior studies suggest that brain-derived neurotrophic factor (BDNF) and interleukin-10 (IL-10) may play key roles in the emergence of anhedonia in MDD. The specific relationships between these biomarkers and the two forms of anhedonia remain unclear. This study investigated the potential links between BDNF, IL-10, and both forms of anhedonia in MDD patients. METHODS This study included 43 participants diagnosed with MDD and 58 healthy controls. It involved detailed assessments of depression and anxiety levels, anticipatory and consummatory pleasure, cognitive functions, and a broad spectrum of plasma biomarkers, such as C-reactive protein, various interleukins, and BDNF. Using partial correlation, variables related to pleasant experiences were identified. Stepwise multiple linear regression analysis was applied to pinpoint the independent predictors of anhedonia in the MDD group. RESULTS Demographically, both groups were comparable in terms of age, sex, body mass index, educational year, and marital status. Individuals with MDD displayed markedly reduced levels of anticipatory and consummatory pleasure, higher anxiety, and depression scores compared to healthy controls. Additionally, cognitive performance was notably poorer in the MDD group. These patients also had lower plasma diamine oxidase levels. Analysis linked anhedonia to impaired delayed memory. Regression results identified IL-10 and BDNF as independent predictors of anticipatory and consummatory anhedonia, respectively. CONCLUSION These findings demonstrate that anticipatory and consummatory anhedonia are influenced by independent factors, thereby providing critical insights into the distinct neuroimmunological mechanisms that underlie various forms of anhedonia. Clinicl Trial Registration Number: NCT03790085.
Collapse
Affiliation(s)
- Lirong Fu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Ren
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Lei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yewei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochang Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Teng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyue Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenan Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinmei Qin
- Mental Health Center of Xuhui District, Shanghai, China.
| | - Aihua Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Mancusi G, Miuli A, Santorelli M, Cavallotto C, Susini O, Pernaci G, Výborová E, Rosa I, d'Onofrio AM, Camardese G, Pettorruso M, Sensi SL, Martinotti G. Exploring peripheral biomarkers in psychostimulant use: A systematic review on neurotrophins, stress-related hormones, oxidative stress molecules and genetic factors. Behav Brain Res 2024; 469:115046. [PMID: 38761859 DOI: 10.1016/j.bbr.2024.115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND This systematic review aims to comprehensively explore the impact of psychostimulant substances on neurotrophic and inflammatory pathways, including brain-derived neurotrophic factor (BDNF), pro-BDNF, cortisol, dehydroepiandrosterone sulfate (DHEAS), thiobarbituric acid reactive substances (TBARS), interleukins, and the role of genetic factors. The study seeks to address existing gaps in the literature by providing a thorough evaluation of neurotrophic and inflammatory system alterations associated with different stages of psychostimulant dependence for a more nuanced understanding of substance use disorder (SUD) neurobiology. METHODS A systematic review was conducted in PubMed, Scopus, and Web of Science databases following the PRISMA guidelines. The research encompasses 50 studies with a participant pool totaling 6792 individuals using psychostimulant substances. RESULTS Key findings include diverse impacts of cocaine on BDNF levels, mainly consisting of their significant increase during withdrawal. In contrast, NGF showed an opposite behavior, reducing during withdrawal. Cortisol and DHEAS levels exhibited relevant increases after psychostimulant use, while TBARS showed conflicting results. Genetic investigations predominantly focused on the Val66Met polymorphism of the BDNF gene, revealing associations with susceptibility to stimulant addiction. CONCLUSIONS Neurotrophins and inflammatory molecules play a significant role in the pathophysiological mechanisms following psychostimulant use. A better understanding of their complex interplay could aid clinicians in identifying biomarkers of different disease stages. Moreover, clinical interventions designed to interfere with neurotrophic and inflammatory pathways could possibly lead to craving-modulatory strategies and reduce pathological neuronal and systemic consequences of psychostimulant use.
Collapse
Affiliation(s)
- Gianluca Mancusi
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Andrea Miuli
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy; Department of Mental Health, ASL 2 Abruzzo Lanciano-Vasto-Chieti, Chieti, Italy.
| | - Mario Santorelli
- Department of Brain and Behavioral Science, University of Pavia, Italy
| | - Clara Cavallotto
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Ottavia Susini
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Giulia Pernaci
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Eliška Výborová
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Ilenia Rosa
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Antonio Maria d'Onofrio
- Institute of Psychiatry and Clinical Psychology, Catholic University of Sacred Heart, Rome, Italy
| | - Giovanni Camardese
- Institute of Psychiatry and Clinical Psychology, Catholic University of Sacred Heart, Rome, Italy
| | - Mauro Pettorruso
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy; Department of Mental Health, ASL 2 Abruzzo Lanciano-Vasto-Chieti, Chieti, Italy
| | - Stefano L Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti 66013, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy; Department of Mental Health, ASL 2 Abruzzo Lanciano-Vasto-Chieti, Chieti, Italy; Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
4
|
Wu C, Jia L, Mu Q, Fang Z, Hamoudi HJAS, Huang M, Hu S, Zhang P, Xu Y, Lu S. Altered hippocampal subfield volumes in major depressive disorder with and without anhedonia. BMC Psychiatry 2023; 23:540. [PMID: 37491229 PMCID: PMC10369779 DOI: 10.1186/s12888-023-05001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Previous neuroimaging findings have demonstrated the association between anhedonia and the hippocampus. However, few studies have focused on the structural changes in the hippocampus in major depressive disorder (MDD) patients with anhedonia. Meanwhile, considering that multiple and functionally specialized subfields of the hippocampus have their own signatures, the present study aimed to investigate the volumetric alterations of the hippocampus as well as its subfields in MDD patients with and without anhedonia. METHODS A total of 113 subjects, including 30 MDD patients with anhedonia, 40 MDD patients without anhedonia, and 43 healthy controls (HCs), were recruited in the study. All participants underwent high-resolution brain magnetic resonance imaging (MRI) scans, and the automated hippocampal substructure module in FreeSurfer 6.0 was used to evaluate the volumes of hippocampal subfields. We compared the volumetric differences in hippocampal subfields among the three groups by analysis of variance (ANOVA, post hoc Bonferroni), and partial correlation was used to explore the association between hippocampal subregion volumes and clinical characteristics. RESULTS ANOVA showed significant volumetric differences in the hippocampal subfields among the three groups in the left hippocampus head, mainly in the cornu ammonis (CA) 1, granule cell layer of the dentate gyrus (GC-ML-DG), and molecular layer (ML). Compared with HCs, both groups of MDD patients showed significantly smaller volumes in the whole left hippocampus head. Interestingly, further exploration revealed that only MDD patients with anhedonia had significantly reduced volumes in the left CA1, GC-ML-DG and ML when compared with HCs. No significant difference was found in the volumes of the hippocampal subfields between MDD patients without anhedonia and HCs, either the two groups of MDD patients. However, no association between hippocampal subfield volumes and clinical characteristics was found in either the subset of patients with anhedonia or in the patient group as a whole. CONCLUSIONS These preliminary findings suggest that MDD patients with anhedonia exhibit unique atrophy of the hippocampus and that subfield abnormalities in the left CA1 and DG might be associated with anhedonia in MDD.
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Jia
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Peng Zhang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 310003, Zhejiang, China.
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
5
|
Wang Z, Zou Z, Xiao J, Min W, Nan LP, Yuan C, Yuan L, Yang C, Huang R, He Y. Brain-derived neurotrophic factor blood levels after electroconvulsive therapy in patients with mental disorders: A systematic review and meta-analysis. Gen Hosp Psychiatry 2023; 83:86-92. [PMID: 37148598 DOI: 10.1016/j.genhosppsych.2023.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Multiple studies have indicated that electroconvulsive therapy (ECT) could increase brain-derived neurotrophic factor (BDNF) concentrations in patients with different mental disorders. The aim of this synthesis was to evaluate post-ECT BDNF concentrations in patients with various mental disorders. METHODS The Embase, PubMed and Web of Science databases were systematically searched for studies in English comparing BDNF concentrations before and after ECT through 11/2022. We extracted the pertinent information from the included studies and evaluated their quality. The standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated to quantify BDNF concentration differences. RESULTS In total, 35 studies assessed BDNF concentrations in 868 and 859 patients pre and post-ECT treatment, respectively. Post-ECT-treatment BDNF concentrations were significantly higher than the pretreatment concentrations (Hedges'g = -0.50, 95% CI (-0.70, -0.30), heterogeneity I2 = 74%, p < 0.001). The analysis that combined both ECT responders and non-responders demonstrated a marked increase in total BDNF levels subsequent to ECT treatment (Hedges'g = -0.27, 95% CI (-0.42, -0.11), heterogeneity I2 = 40%, p = 0.0007). CONCLUSION Irrespective of the effectiveness of ECT, Our study shows that peripheral BDNF concentrations increase significantly after the entire course of ECT, which may enhance our comprehension of the interplay between ECT treatment and BDNF levels. However, BDNF concentrations were not associated with the effectiveness of ECT, and abnormal concentrations of BDNF may be linked to the pathophysiological process of mental illness, necessitating more future research.
Collapse
Affiliation(s)
- Zuxing Wang
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Wenjiao Min
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Li-Ping Nan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cui Yuan
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Lu Yuan
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chenghui Yang
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying He
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
6
|
Zheng W, Gu L, Zhou Y, Wang C, Lan X, Zhang B, Li Z, Ning Y. Baseline Plasma BDNF Levelsare Associated with Antianhedonic Effects of Repeated-Dose Intravenous Ketamine in Major Depressive Disorder. Curr Neuropharmacol 2023; 21:1013-1021. [PMID: 36173064 PMCID: PMC10227912 DOI: 10.2174/1570159x20666220927085706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Evidence has shown that brain-derived neurotrophic factor (BDNF) is associated with anhedonia symptoms in major depressive disorder (MDD) patients, while the rapid antianhedonic effects of ketamine may occur independently of depressive symptoms. To our knowledge, the relationship between plasma BDNF (pBDNF) and the effect of repeated-dose intravenous ketamine on anhedonic symptoms has not been investigated. METHODS Seventy-five Chinese individuals with MDD received ketamine treatments. Anhedonia and pBDNF concentrations were evaluated with a subscale of the Montgomery-Åsberg Depression Rating Scale (MADRS) and enzyme-linked immunosorbent assay (ELISA) at baseline, day 13 and day 26. RESULTS Baseline pBDNF levels were associated with changes in anhedonic symptoms on day 13 (r=0.30, P=0.008). Interestingly, pBDNF concentrations were associated with changes in anhedonia symptomson day 26 (r= -0.32, P=0.02). Baseline pBDNF levels were higher in antianhedonic responders than in antianhedonic nonresponders (F=4.2, P=0.04). Ketaminereduced anhedonia symptoms in antianhedonic responders compared to nonresponders on days 13 and 26 (all Ps<0.05). The baseline high BDNF group had a lower level of anhedonia than the low BDNF group on days 13 (P<0.001) and 26 (P=0.01). CONCLUSION Our study suggests that baseline pBDNF concentrations may predict the antianhedonic effect in individuals with MDD treated with repeated doses of ketamine.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Limei Gu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zezhi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Fang Z, Mu Q, Wu C, Jia L, Wang Z, Hu S, Xu Y, Huang M, Lu S. The impacts of anhedonia on brain functional alterations in patients with major depressive disorder: A resting-state functional magnetic resonance imaging study of regional homogeneity. J Psychiatr Res 2022; 156:84-90. [PMID: 36244202 DOI: 10.1016/j.jpsychires.2022.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anhedonia, as one of the core manifestations of major depressive disorder (MDD), has an effect on prognosis of the disease. However, the neuropathology of MDD is complex and the neural basis of anhedonia remains unclear. The aim of the present study was to investigate the impacts of anhedonia on brain functional alterations in patients with MDD. METHODS A total of 62 individuals including MDD patients with anhedonia (n = 22), MDD patients without anhedonia (n = 20), and healthy controls (HCs, n = 20) were recruited. All participants underwent resting-state functional magnetic resonance imaging scanning and intrinsic brain function was explored by using regional homogeneity (ReHo) method. A two-sample t-test was performed to explore ReHo differences between MDD patients and HCs, then analysis of variance (ANOVA) was introduced to obtain brain regions with significant differences among three groups, and finally post hoc tests were calculated for inter-group comparisons. Correlations between ReHo values of each survived area and clinical characteristics in MDD patients were further analyzed. RESULTS Compared with HCs, MDD showed increased ReHo in the left superior temporal gyrus (STG) and bilateral inferior frontal gyrus (IFG), as well as decreased ReHo in the left superior frontal gyrus (SFG). Interestingly, this relationship was attenuated and no longer significant after consideration for the effect of anhedonia in MDD patients. MDD patients with anhedonia were more likely to exhibit decreased ReHo in the left SFG and left middle cingulate gyrus (MCG) when comparing to HCs. No significant difference was found between MDD patients without anhedonia and HCs, either the two groups of MDD patients. There was no significant association between ReHo values of each survived area and clinical characteristics in MDD patients. CONCLUSIONS The present results suggest that the impacts of anhedonia on brain functional alterations in MDD should be emphasized and disturbed intrinsic brain function in the frontal-limbic regions may be associated with anhedonia in MDD patients.
Collapse
Affiliation(s)
- Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Jia
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, Zhejiang, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Lu S, Shao J, Feng Q, Wu C, Fang Z, Jia L, Wang Z, Hu S, Xu Y, Huang M. Aberrant interhemispheric functional connectivity in major depressive disorder with and without anhedonia. BMC Psychiatry 2022; 22:688. [PMID: 36348342 PMCID: PMC9644581 DOI: 10.1186/s12888-022-04343-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Anhedonia is a core feature of major depressive disorder (MDD), and as a subtype of depression, MDD with anhedonia may have exceptional neurobiological mechanisms. However, the neuropathology of anhedonia in MDD remains unclear. Thus, this study aimed to investigate the brain functional differences between MDD with and without anhedonia. METHODS A total of 62 individuals including 22 MDD patients with anhedonia, 20 MDD patients without anhedonia, and 20 healthy controls (HCs) were recruited for this study. All participants underwent 3.0-T functional magnetic resonance imaging scan. Voxel-mirrored homotopic connectivity (VMHC) was employed to quantitatively describe bilateral functional connectivity. Analyses of variance (ANOVA) were performed to obtain brain regions with significant differences among three groups and then post hoc tests were calculated for inter-group comparisons. RESULTS The ANOVA revealed significant VMHC differences among three groups in the bilateral middle temporal gyrus (MTG), superior frontal gyrus (SFG), and inferior parietal lobule (IPL) (F = 10.47 ~ 15.09, p < 0.05, AlphaSim corrected). Relative to HCs, MDD with anhedonia showed significantly decreased VMHC in the bilateral MTG (t = -5.368, p < 0.05, AlphaSim corrected), as well as increased VMHC in the bilateral SFG (t = -4.696, p < 0.05, AlphaSim corrected). Compared to MDD without anhedonia, MDD with anhedonia showed significantly decreased VMHC in the bilateral MTG and IPL (t = -5.629 ~ -4.330, p < 0.05, AlphaSim corrected), while increased VMHC in the bilateral SFG (t = 3.926, p < 0.05, AlphaSim corrected). However, no significant difference was found between MDD without anhedonia and HCs. CONCLUSION The present findings suggest that MDD with and without anhedonia exhibit different patterns of interhemispheric connectivity. Anhedonia in MDD is related to aberrant interhemispheric connectivity within brain regions involved in the frontal-temporal-parietal circuit.
Collapse
Affiliation(s)
- Shaojia Lu
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang China
| | - Jiamin Shao
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XFaculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Qian Feng
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XFaculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Congchong Wu
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XFaculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Zhe Fang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XFaculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Lili Jia
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XFaculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,Department of Clinical Psychology, The Fifth Peoples’ Hospital of Lin’an District, Hangzhou, Zhejiang China
| | - Zheng Wang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang China
| | - Shaohua Hu
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder’s Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Meshkat S, Alnefeesi Y, Jawad MY, D Di Vincenzo J, B Rodrigues N, Ceban F, Mw Lui L, McIntyre RS, Rosenblat JD. Brain-Derived Neurotrophic Factor (BDNF) as a biomarker of treatment response in patients with Treatment Resistant Depression (TRD): A systematic review & meta-analysis. Psychiatry Res 2022; 317:114857. [PMID: 36194941 DOI: 10.1016/j.psychres.2022.114857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 09/18/2022] [Indexed: 01/04/2023]
Abstract
Multiple lines of evidence have implicated brain-derived neurotrophic factor (BDNF) in treatment-resistant depression (TRD). The aim of this synthesis was to determine the impact of TRD treatments on peripheral BDNF levels, and ascertain whether these changes are associated with antidepressant effects. Thirty-six articles involving 1198 patients with TRD were included herein. Electroconvulsive therapy (ECT), ketamine, and repetitive transcranial magnetic stimulation (rTMS) were the most common TRD treatments investigated. Serum BDNF levels significantly increased in six, two, four and one studies following ECT, ketamine, rTMS and atypical antipsychotics, respectively. The estimated mean baseline serum BDNF concentration in TRD patients ± 95% CI was 15.5 ± 4.34 ng/mL. Peripheral BDNF levels significantly increased overall (Hedges' g ± 95% CI = 0.336 ± 0.302; p < 0.05), but no association with depressive symptoms was found (p ≥ 0.05). These results demonstrate that peripheral measurements of total BDNF (i.e., mature and percursor forms of BDNF) are inadequate predictors of treatment response in TRD patients, and other considerations suggest that this would still apply to separable measurements of mature BDNF and its precursor.
Collapse
Affiliation(s)
- Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Yazen Alnefeesi
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | | | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Nelson B Rodrigues
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Felicia Ceban
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Leanna Mw Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Miuli A, d’Andrea G, Pettorruso M, Mancusi G, Mosca A, Di Carlo F, Martinotti G, di Giannantonio M. From a Cycle to a Period: The Potential Role of BDNF as Plasticity and Phase-Specific Biomarker in Cocaine Use Disorder. Curr Neuropharmacol 2022; 20:2024-2028. [PMID: 35034597 PMCID: PMC9886838 DOI: 10.2174/1570159x20666220114152052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Cocaine Use Disorder (CUD) is one of the diseases with the greatest social and health impact, due to the high cost of rehabilitation management and the high risk of dangerous behavior and relapse. This pathology frequently leads to unsuccessful attempts to interrupt the consumption, resulting in relapses and a vicious cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/ anticipation (craving). The alternation of these phases in addiction was well illustrated by Koob and colleagues in the so-called "addictive cycle", which nowadays represents a landmark in the addiction field. Recently, there has been a surge of interest in the worldwide literature for biomarkers that might explain the different stages of addiction, and one of the most studied biomarkers is, without a doubt, Brain-derived Neurotrophic Factor (BDNF). In this perspective article, we discuss the potential role of BDNF as biomarker of the CUD phases described in the "Addictive Cycle", speculating about the close relationship between BDNF fluctuations and the clinical course of CUD. We also discuss BDNF's potential role as "staging" biomarker, predicting the progression of the disease. Finding valuable biomarkers of CUD severity and disease stage could shift clinicians' focus away from behavioral symptomatic treatment and toward a novel brain-based approach, allowing for the development of more effective and targeted therapeutic strategies, thus determining major benefits for CUD patients.
Collapse
Affiliation(s)
- Andrea Miuli
- Department of Mental Health, ASL 2 Abruzzo Lanciano-Vasto-Chieti, Italy; ,Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti, Italy; ,Equally contributed as first authors
| | - Giacomo d’Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti, Italy; ,Equally contributed as first authors
| | - Mauro Pettorruso
- Department of Mental Health, ASL 2 Abruzzo Lanciano-Vasto-Chieti, Italy; ,Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti, Italy; ,Address correspondence to this author at the Department of Mental Health, ASL 2 Abruzzo Lanciano-Vasto, Chieti, Italy; E-mail:
| | - Gianluca Mancusi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti, Italy;
| | - Alessio Mosca
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti, Italy;
| | - Francesco Di Carlo
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti, Italy;
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti, Italy; ,Department of Pharmacy, Pharmacology, Clinical Science, University of Hertfordshire, Herts, UK
| | - Massimo di Giannantonio
- Department of Mental Health, ASL 2 Abruzzo Lanciano-Vasto-Chieti, Italy; ,Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti, Chieti, Italy;
| |
Collapse
|
11
|
Li Y, Yue Y, Chen S, Jiang W, Xu Z, Chen G, Zhu Z, Tan L, Yuan Y. Combined serum IL-6, C-reactive protein, and cortisol may distinguish patients with anhedonia in major depressive disorder. Front Mol Neurosci 2022; 15:935031. [PMID: 36090246 PMCID: PMC9449462 DOI: 10.3389/fnmol.2022.935031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroinflammation and anhedonia in major depressive disorder (MDD) are closely connected, though the exact mechanism is unclear. This study aimed to investigate the relationships between cytokines, C-reactive protein (CRP), cortisol, and anhedonia, revealing the potential predictive value in identifying anhedonic MDD. In total, 66 patients with MDD (29 with anhedonia and 37 without anhedonia) and 66 healthy controls (HCs) were included. The severity of depression and anhedonia was evaluated using the Hamilton Rating Scale for Depression-24 (HAMD-24) and Snaith-Hamilton Pleasure Scale (SHAPS), respectively. Serum cytokines were measured using flow cytofluorometric kits, while CRP and cortisol were measured using enzyme-linked immunosorbent assay kits. We found higher serum levels of interleukin-2 (IL-2), IL-6, and cortisol in MDD than in HC where anhedonic MDD was highest. CRP and IL-6 were positively associated with anhedonia, and cortisol levels were related to both anhedonia and depression. A combination of IL-6, CRP, and cortisol had optimal predictive value for distinguishing anhedonic MDD. Anhedonic MDD has unique neuroendocrine-immune characteristics compared with those without anhedonia. The combination of IL-6, CRP, and cortisol might be an early marker to distinguish anhedonic MDD.
Collapse
Affiliation(s)
- Yinghui Li
- Nanjing Medical University, Nanjing, China
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zixin Zhu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Liangliang Tan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Nanjing Medical University, Nanjing, China
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Yonggui Yuan
| |
Collapse
|
12
|
Lu S, Wu C, Jia L, Fang Z, Lu J, Mou T, Hu S, He H, Huang M, Xu Y. Increased plasma levels of IL-6 are associated with striatal structural atrophy in major depressive disorder patients with anhedonia. Front Psychiatry 2022; 13:1016735. [PMID: 36405925 PMCID: PMC9669641 DOI: 10.3389/fpsyt.2022.1016735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Anhedonia, as the core endophenotype of major depressive disorder (MDD), is closely related to poor prognosis, but the mechanism of this feature remains to be understood. The aim of this study was to investigate the inflammatory factors and brain structural alterations in MDD patients with anhedonia and evaluate the relationship between these factors. METHODS We assessed the plasma levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in MDD patients with anhedonia (n = 22), MDD patients without anhedonia (n = 20), and age- and sex-matched healthy controls (HCs, n = 20) by enzyme-linked immunosorbent assay kits. All participants underwent high-resolution brain magnetic resonance imaging (MRI) scans, and voxel-based morphometry (VBM) was used to evaluate their gray matter volume (GMV). We compared inflammatory factors and GMV among the three groups and explored their relationships in MDD patients with anhedonia. RESULTS Compared with those of HCs, plasma levels of IL-1β were increased in patients with MDD independent of anhedonia features, while plasma levels of IL-6 were elevated in MDD patients with anhedonia only. Meanwhile, MDD patients with anhedonia exhibited reduced GMV in the left striatal structures compared to MDD patients without anhedonia and HCs. Moreover, a significant association was observed between increased plasma levels of IL-6 and decreased GMV of the left putamen in MDD patients with anhedonia. CONCLUSIONS The present research outcomes suggest that anhedonia is associated with increased plasma levels of IL-6 and decreased GMV in the left striatal structures. In addition, this study demonstrates that GMV loss in the left putamen is related to increased plasma levels of IL-6 in MDD with anhedonia, which provides further insights into the possible mechanisms of anhedonia.
Collapse
Affiliation(s)
- Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Jia
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, China
| | - Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Hongjian He
- College of Biomedical Engineering and Instrument Science, Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| |
Collapse
|
13
|
Elemery M, Kiss S, Dome P, Pogany L, Faludi G, Lazary J. Change of Circulating Vascular Endothelial Growth Factor Level and Reduction of Anhedonia Are Associated in Patients With Major Depressive Disorder Treated With Repetitive Transcranial Magnetic Stimulation. Front Psychiatry 2022; 13:806731. [PMID: 35711587 PMCID: PMC9193814 DOI: 10.3389/fpsyt.2022.806731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
AIM Vascular endothelial growth factor (VEGF) has been implicated in mediating the effect of antidepressant therapies as it plays a significant role in the neurogenesis. Anhedonia, an endophenotype of major depressive disorder (MDD), is related to the dorsolateral prefrontal cortex, the major focus of brain stimulation in MDD. The aim of our study was to analyze the change of serum VEGF level after rTMS treatment in association with anhedonia. MATERIALS AND METHODS A dataset of 17 patients with TRD who were treated with antidepressants and bilateral rTMS for 2 × 5 days was analyzed. Depression was measured by the Montgomery-Asberg Depression Scale (MADRS) and anhedonia by the Snaith-Hamilton Pleasure Scale (SHAPS) for monitoring the symptom changes. The serum VEGF levels and symptoms were assessed on the first (V1), on the 14th (V2), and on the 28th day (V3). The level of VEGF was measured by ELISA assay. RESULTS There was no significant association between MADRS scores and serum VEGF levels at any timepoint. The decrease in the SHAPS score was significantly associated with the increase in VEGF level between V1 and V2 (p = 0.001). The VEGF levels were significantly higher in non-responders than in responders (p = 0.04). The baseline VEGF level has been proven as a significant predictor of treatment response (p = 0.045). CONCLUSION Our results suggest that serum VEGF can be sensitive to the changes of anhedonia during rTMS treatment. Considering that the most widely used depression scales are not applicable for the assessment of anhedonia, measurement of anhedonia in rTMS treatment studies of patients with TRD can be suggested as more appropriate data on distinct pathogenic pathways and specific biomarkers of the disorder.
Collapse
Affiliation(s)
- Monika Elemery
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Szilvia Kiss
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Peter Dome
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.,Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Laszlo Pogany
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Gabor Faludi
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Judit Lazary
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| |
Collapse
|
14
|
Fang X, Wang D, Tang W, Liu H, Zhang X, Zhang C. Anhedonia difference between major depressive disorder and bipolar disorder II. BMC Psychiatry 2021; 21:531. [PMID: 34706699 PMCID: PMC8555067 DOI: 10.1186/s12888-021-03548-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE This study aims to explore the difference in anhedonia between Major Depressive Disorder (MDD) and Bipolar Disorder II (BD-II), and attempt to distinguish the two diseases through Snaith-Hamilton Pleasure Scale (SHAPS). METHODS A total of 164 drug-free depressive patients (98 MDD patients, 66 BD-II patients) completed the investigation. 17-item Hamilton Depression Scale (HAMD-17) and Hamilton Anxiety Scale (HAMA) and SHAPS were assessed in all participants. RESULTS Our results showed that BD-II patients had higher SHAPS scores than MDD patients. The stepwise logistic regression analysis further revealed that SHAPS score, drinking habit, and extroversion as influencing factors for the identification of BD-II. The ROC curve analysis indicated that SHAPS could differentiate BD-II from MDD patients (AUC = 0.655, P = 0.001, 95% CI = 0.568 to 0.742), with the best screening cutoff at 26, and the corresponding sensitivity and specificity was 0.788 and 0.520, respectively. CONCLUSION Our results suggest that BD-II patients had more severe anhedonia compared to MDD patients, and the difference in anhedonia may help clinicians preliminary identify BD patients from MDD patients. The preliminary findings are worthly of further exploration.
Collapse
Affiliation(s)
- Xinyu Fang
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People’s Republic of China ,grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Dandan Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Tang
- grid.268099.c0000 0001 0348 3990The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hongyang Liu
- grid.268099.c0000 0001 0348 3990The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Hashida R, Nakano D, Yamamura S, Kawaguchi T, Tsutsumi T, Matsuse H, Takahashi H, Gerber L, Younossi ZM, Torimura T. Association between Activity and Brain-Derived Neurotrophic Factor in Patients with Non-Alcoholic Fatty Liver Disease: A Data-Mining Analysis. Life (Basel) 2021; 11:799. [PMID: 34440543 PMCID: PMC8401718 DOI: 10.3390/life11080799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
Reduction in activity links to the development and progression of non-alcoholic fatty liver disease (NAFLD). Brain-derived neurotrophic factor (BDNF) is known to regulate an activity. We aimed to investigate the association between reduction in activity and BDNF in patients with NAFLD using data-mining analysis. We enrolled 48 NAFLD patients. Patients were classified into reduced (n = 21) or normal activity groups (n = 27) based on the activity score of the Chronic Liver Disease Questionnaire-NAFLD/non-alcoholic steatohepatitis. Circulating BDNF levels were measured using an enzyme-linked immunoassay. Factors associated with reduced activity were analyzed using decision-tree and random forest analyses. A reduction in activity was seen in 43.8% of patients. Hemoglobin A1c and BDNF were identified as negative independent factors for reduced activity (hemoglobin A1c, OR 0.012, p = 0.012; BDNF, OR 0.041, p = 0.039). Decision-tree analysis showed that "BDNF levels ≥ 19.1 ng/mL" was the most important classifier for reduced activity. In random forest analysis, serum BDNF level was the highest-ranked variable for distinguishing between the reduced and normal activity groups (158 valuable importance). Reduced activity was commonly seen in patients with NAFLD. Data-mining analyses revealed that BNDF was the most important independent factor corresponding with the reduction in activity. BDNF may be an important target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Ryuki Hashida
- Division of Rehabilitation, Kurume University Hospital, Kurume 830-0011, Japan; (R.H.); (H.M.)
- Department of Orthopedics, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (D.N.); (S.Y.); (T.T.); (T.T.)
| | - Sakura Yamamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (D.N.); (S.Y.); (T.T.); (T.T.)
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (D.N.); (S.Y.); (T.T.); (T.T.)
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (D.N.); (S.Y.); (T.T.); (T.T.)
| | - Hiroo Matsuse
- Division of Rehabilitation, Kurume University Hospital, Kurume 830-0011, Japan; (R.H.); (H.M.)
- Department of Orthopedics, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 840-8502, Japan;
| | - Lynn Gerber
- Center for Liver Disease, Department of Medicine, Inova Fairfax Hospital, Falls Church, VA 22042, USA; (L.G.); (Z.M.Y.)
| | - Zobair M. Younossi
- Center for Liver Disease, Department of Medicine, Inova Fairfax Hospital, Falls Church, VA 22042, USA; (L.G.); (Z.M.Y.)
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (D.N.); (S.Y.); (T.T.); (T.T.)
| |
Collapse
|
16
|
Tang W, Liu H, Chen L, Zhao K, Zhang Y, Zheng K, Zhu C, Zheng T, Liu J, Wang D, Yu L, Fang X, Zhang C, Su KP. Inflammatory cytokines, complement factor H and anhedonia in drug-naïve major depressive disorder. Brain Behav Immun 2021; 95:238-244. [PMID: 33794316 DOI: 10.1016/j.bbi.2021.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Anhedonia is a core symptom of major depressive disorder (MDD) and often associated with poor prognosis. The main objective of the present study was to explore the relationship between complement factor H (CFH), inflammatory cytokines and anhedonia in drug-naïve MDD patients. METHODS A total of 215 participants (61 MDD patients with anhedonia, 78 MDD patients without anhedonia, and 76 control subjects) were included. Severity of depression and levels of anhedonia were evaluated by Hamilton Rating Scale for Depression-17 (HAMD-17) and SHAPS (Snaith-Hamilton Pleasure Scale). Plasma levels of CFH, interleukin-6 (IL-6), IL-10 and tumor necrosis factor-α (TNF-α) were measured. RESULTS The plasma levels of CFH, IL-10 and TNF-α were higher in drug-naïve MDD patients than control subjects. Compared to MDD patients without anhedonia, patients with anhedonia showed higher levels of CFH and IL-6. The stepwise regression analysis revealed that IL-10, TNF-α, as well as IL-10 × TNF-α were associated with depressive symptoms measured by HAMD-17 in drug-naïve MDD patients, while only CFH levels were identified as a mediator factor for the severity of anhedonia in the patients. CONCLUSION MDD patients with anhedonia showed different inflammatory characteristics compared to patients without anhedonia. Our results provide novel evidence suggesting that increased plasma CFH levels may be a potential biomarker of anhedonia of subtyping MDD.
Collapse
Affiliation(s)
- Wei Tang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China; Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyang Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixian Chen
- Second People's Hospital of Yuhuan, Zhejiang, China
| | - Ke Zhao
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Zhang
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Ke Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng Zhu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tiansheng Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahong Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dandan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan; Institute of Psychiatry, King's College London, London, UK.
| |
Collapse
|
17
|
Yang Y, Yi J, Pan M, Hu B, Duan H. Edaravone Alleviated Propofol-Induced Neurotoxicity in Developing Hippocampus by mBDNF/TrkB/PI3K Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1409-1422. [PMID: 33833500 PMCID: PMC8020057 DOI: 10.2147/dddt.s294557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
Background To investigate the neuroprotective effect of edaravone on excessive-dose propofol-induced neurotoxicity in the hippocampus of newborn rats and HT22 cells. Methods Cell proliferation was investigated by assessing ki67 expression in the neural stem of the hippocampus of newborn rats and by cell counting kit-8 (CCK8) assay in HT22 cells. Cell apoptosis was assessed in vivo by caspase 3 detection in Western blots and measurement of apoptosis in neurons and glial cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Apoptosis was analyzed by flow cytometry in HT22 cells. The Morris water maze was used to evaluate the long-term learning and memory ability of rats. Inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). The expression of mBDNF/TrkB/PI3K pathway-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction (q-RT PCR). Results In neonatal rat hippocampus and HT22 cells, edaravone increased cell proliferation and decreased cell apoptosis after excessive propofol-induced neurotoxicity. In addition, the levels of proinflammatory factors interleukin (IL)-6 and tumor necrosis factor (TNF)-α were reduced by edaravone pretreatment. The use of the tropomyosin receptor kinase B (TrkB) antagonist ANA-12 and TrkB agonist 7,8DHF with propofol groups showed that edaravone mitigated excessive propofol-induced neurotoxicity through the mature brain-derived neurotrophic factor (mBDNF)/TrkB/phosphoinositide 3-kinase (PI3K) pathway. However, the current dose of propofol did not significantly affect long-term learning and memory in rats. Conclusion Edaravone pretreatment ameliorated propofol-induced proliferation inhibition, neuroapoptosis, and neural inflammation by activating the mBDNF/TrkB/PI3K pathway.
Collapse
Affiliation(s)
- Yangliang Yang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Jing Yi
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Mengzhi Pan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Hongwei Duan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| |
Collapse
|