1
|
Koning E, Chaves C, Kirkpatrick RH, Brietzke E. Exploring the neurobiological correlates of psilocybin-assisted psychotherapy in eating disorders: a review of potential methodologies and implications for the psychedelic study design. J Eat Disord 2024; 12:214. [PMID: 39731144 DOI: 10.1186/s40337-024-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
Eating disorders (EDs) are a group of debilitating mental illnesses characterized by maladaptive eating behaviors and severe cognitive-emotional dysfunction, directly affecting 1-3% of the population. Standard treatments are not effective in approximately one third of ED cases, representing the need for scientific advancement. There is emerging evidence for the safety and efficacy of psilocybin-assisted psychotherapy (PAP) to improve treatment outcomes in individuals with EDs. However, the limited knowledge of the neurobiological mechanisms underlying the therapeutic effects of PAP restricts the ability to confirm its clinical utility. This narrative review presents an overview of methodologies used to elucidate the pathophysiological mechanisms of EDs or the effects of psilocybin that could be employed to probe the neurobiological correlates of PAP in EDs, including magnetic resonance imaging and molecular neuroimaging techniques, electrophysiological approaches, and neuroplasticity markers. Finally, the implications of these methodologies are described in relation to the unique features of the psychedelic study design, challenges, limitations, and future directions to advance the field. This paper represents a valuable resource for scientists during study conceptualization and design phases and stimulates advancement in the identification of effective therapeutic interventions for EDs.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- , 76 Stuart Street, Kingston, ON, K7L 2V7, Canada.
| | - Cristiano Chaves
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Ryan H Kirkpatrick
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Elisa Brietzke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| |
Collapse
|
2
|
Brooks SJ, Dahl K, Dudley-Jones R, Schiöth HB. A neuroinflammatory compulsivity model of anorexia nervosa (NICAN). Neurosci Biobehav Rev 2024; 159:105580. [PMID: 38417395 DOI: 10.1016/j.neubiorev.2024.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Affiliation(s)
- S J Brooks
- Department of Surgical Sciences, Uppsala University, Sweden; School of Psychology, Liverpool John Moores University, UK; Neuroscience Research Laboratory (NeuRL), Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa.
| | - K Dahl
- Department of Surgical Sciences, Uppsala University, Sweden
| | - R Dudley-Jones
- School of Psychology, Liverpool John Moores University, UK
| | - H B Schiöth
- Department of Surgical Sciences, Uppsala University, Sweden
| |
Collapse
|
3
|
Arold D, Bernardoni F, Geisler D, Doose A, Uen V, Boehm I, Roessner V, King JA, Ehrlich S. Predicting long-term outcome in anorexia nervosa: a machine learning analysis of brain structure at different stages of weight recovery. Psychol Med 2023; 53:7827-7836. [PMID: 37554008 PMCID: PMC10758339 DOI: 10.1017/s0033291723001861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterized by sizable, widespread gray matter (GM) reductions in the acutely underweight state. However, evidence for persistent alterations after weight-restoration has been surprisingly scarce despite high relapse rates, frequent transitions to other psychiatric disorders, and generally unfavorable outcome. While most studies investigated brain regions separately (univariate analysis), psychiatric disorders can be conceptualized as brain network disorders characterized by multivariate alterations with only subtle local effects. We tested for persistent multivariate structural brain alterations in weight-restored individuals with a history of AN, investigated their putative biological substrate and relation with 1-year treatment outcome. METHODS We trained machine learning models on regional GM measures to classify healthy controls (HC) (N = 289) from individuals at three stages of AN: underweight patients starting intensive treatment (N = 165, used as baseline), patients after partial weight-restoration (N = 115), and former patients after stable and full weight-restoration (N = 89). Alterations after weight-restoration were related to treatment outcome and characterized both anatomically and functionally. RESULTS Patients could be classified from HC when underweight (ROC-AUC = 0.90) but also after partial weight-restoration (ROC-AUC = 0.64). Alterations after partial weight-restoration were more pronounced in patients with worse outcome and were not detected in long-term weight-recovered individuals, i.e. those with favorable outcome. These alterations were more pronounced in regions with greater functional connectivity, not merely explained by body mass index, and even increases in cortical thickness were observed (insula, lateral orbitofrontal, temporal pole). CONCLUSIONS Analyzing persistent multivariate brain structural alterations after weight-restoration might help to develop personalized interventions after discharge from inpatient treatment.
Collapse
Affiliation(s)
- Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Volkan Uen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ilka Boehm
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|