Qaid SMH, Asemi NN, Ahmed A, Alkadi M, Alawsh S. Synthesis, thermoluminescence characterizations, and photon attenuation parameters of MgAl
2 O
4 structure doped with different ions.
LUMINESCENCE 2024;
39:e4681. [PMID:
38286608 DOI:
10.1002/bio.4681]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
In this work, different ion co-doped Mg1-x Al2 O4 nanophosphors, coded as M5Cr-5La A, M5Cr-5Cu A, M0.07Si-0.03Ce A, and M0.05Ti-0.05La A, where 5Cr-5La, 5Cr-5Cu, 0.07Si-0.03Ce, and 0.05Ti-0.05La representing the added ions (mol%), were prepared using the sol-gel method. Phase structure, transmission electron microscope (TEM) images, and element feasibility were checked using X-ray diffraction, TEM analysis, and energy dispersive X-ray (EDX) spectroscopy. Their thermoluminescence (TL) response was checked using a 5 Gy γ-test dose. The M0.05Ti-0.05La A sample was found to be best for the TL response with an ~1.1 times response compared with that of the MTS-700 commercial detector. A wide range of dose-responses for the M0.05Ti-0.05La A sample was found up to a 20 Gy γ-dose with the lowest detectable dose of ⁓23 μGy. Photon attenuation parameter results were Zeff ⁓10, which mean that the M0.05Ti-0.05La A sample could be considered as a near tissue equivalent material. Due to this study, the M0.05Ti-0.05La A sample can be considered as a promising detector for application in personal and medical dosimetric monitoring.
Collapse