1
|
Chingangbam E, Wangkhem R, Singh NS, Yaiphaba N. Blue to Red Emission Tunable Bi 3+ co-doped YPO 4:Eu 3+: Host Emission and Phase Change. J Fluoresc 2024:10.1007/s10895-024-03926-z. [PMID: 39276307 DOI: 10.1007/s10895-024-03926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Bi3+(0, 1, 3, 5, 7, 10, 12 and 15 at.%) co-doped YPO4:Eu3+ have been hydrothermally synthesized. Bi3+ (x ≥ 1 at.%) co-doping in YPO4:Eu3+ renders mixed crystalline phase of tetragonal to hexagonal. Pure tetragonal phase of Bi3+ co-doped YPO4:Eu3+ could be achieved upon annealing at 900 °C. The luminescence intensity is improved significantly upon annealing at 900 °C. This is due to the reduction of quenching pathways such as water molecules, dangling bonds, etc. The probability of magnetic dipole and electric dipole transitions is observed to be altered. As-prepared samples show near blue emission, while 900 °C annealed samples exhibit red emission, which could be a potential candidate for display, sensing and biological labelling, etc.
Collapse
Affiliation(s)
| | - Ranjoy Wangkhem
- Department of Physics, National Institute of Technology Manipur, Langol, 795004, India
- Department of Physics, Nagaland University, Lumami, 798627, India
| | - N Shanta Singh
- Department of Physics, Nagaland University, Lumami, 798627, India.
| | - N Yaiphaba
- Department of Chemistry, Manipur University, Canchipur, 795003, India.
| |
Collapse
|
2
|
Synthesis, Structure and Near Infrared Fluorescence Property of a New Nd-MOF Based on a Triangular Benzylamine Ligand. J Fluoresc 2023; 33:595-599. [PMID: 36456790 DOI: 10.1007/s10895-022-03048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022]
Abstract
A new 3D metal-organic framework (Nd-MOF) {[Nd2L2]·2NH2(CH3)2·3H2O} was successfully established via a solvothermal method with Nd3+ ion and 5-(bis(4-carboxybenzyl) amino)-isophthalicacid (H4L), and has also been characterized by X-ray diffraction, powder X-ray diffraction (PXRD), IR and photoluminescence(PL)spectrum. The neodymium ions are free of coordinated solvents, and the Nd-MOF exhibits strong near-infrared (NIR) fluorescence. Besides, Its NIR fluorescence property shows low temperature resistance, which is favorable for being used in the low temperature environment. Besides, the fluorescence lifetime of Nd-MOF is 6.03 μs, and the quantum yield is 1.2%. The small quantum yield may owe to large energy gap between the T1 of the ligand H4L and the resonance energy level 4F3/2 of the Nd3+ ion, or due to large crystal size of the Nd-MOF.
Collapse
|
3
|
Pawlik N, Goryczka T, Pietrasik E, Śmiarowska J, Pisarski WA. Photoluminescence Investigations of Dy 3+-Doped Silicate Xerogels and SiO 2-LaF 3 Nano-Glass-Ceramic Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4500. [PMID: 36558353 PMCID: PMC9786153 DOI: 10.3390/nano12244500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this work, the series of Dy3+-doped silicate xerogels were synthesized by sol-gel technique and further processed at 350 °C into SiO2-LaF3:Dy3+ nano-glass-ceramic materials. The X-ray diffraction (XRD) measurements, along with the thermal analysis, indicated that heat-treatment triggered the decomposition of La(TFA)3 inside amorphous sol-gel hosts, resulting in the formation of hexagonal LaF3 phase with average crystal size at about ~10 nm. Based on the photoluminescence results, it was proven that the intensities of blue (4F9/2 → 6H15/2), yellow (4F9/2 → 6H13/2), and red (4F9/2 → 6H11/2) emissions, as well as the calculated yellow-to-blue (Y/B) ratios, are dependent on the nature of fabricated materials, and from fixed La3+:Dy3+ molar ratios. For xerogels, the emission was gradually increased, and the τ(4F9/2) lifetimes were elongated to 42.7 ± 0.3 μs (La3+:Dy3+ = 0.82:0.18), however, for the sample with the lowest La3+:Dy3+ molar ratio (0.70:0.30), the concentration quenching was observed. For SiO2-LaF3:Dy3+ nano-glass-ceramics, the concentration quenching effect was more visible than for xerogels and started from the sample with the highest La3+:Dy3+ molar ratio (0.988:0.012), thus the τ(4F9/2) lifetimes became shorter from 1731.5 ± 5.7 up to 119.8 ± 0.4 μs. The optical results suggest, along with an interpretation of XRD data, that Dy3+ ions were partially entered inside LaF3 phase, resulting in the shortening of Dy3+-Dy3+ inter-ionic distances.
Collapse
Affiliation(s)
- Natalia Pawlik
- Institute of Chemistry, University of Silesia, 40-007 Katowice, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia, 41-500 Chorzów, Poland
| | - Ewa Pietrasik
- Institute of Chemistry, University of Silesia, 40-007 Katowice, Poland
| | - Joanna Śmiarowska
- Institute of Chemistry, University of Silesia, 40-007 Katowice, Poland
| | | |
Collapse
|
4
|
|
5
|
Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020; 35:237-263. [DOI: 10.1177/0885328220924540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700–1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing, PR China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangwei Zhang
- Zhejiang Fountain Aptitude Technology Inc., Hangzhou, Zhejiang, PR China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
6
|
Ding L, Ren F, Liu Z, Jiang Z, Yun B, Sun Q, Li Z. Size-Dependent Photothermal Conversion and Photoluminescence of Theranostic NaNdF4 Nanoparticles under Excitation of Different-Wavelength Lasers. Bioconjug Chem 2019; 31:340-351. [DOI: 10.1021/acs.bioconjchem.9b00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lihua Ding
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Baofeng Yun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|