1
|
Jiang N, Huang B, Wang M, Chen Y, Yu Q, Guan L. Universal and Energy-Efficient Approach to Synthesize Pt-Rare Earth Metal Alloys for Proton Exchange Membrane Fuel Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305110. [PMID: 37986658 PMCID: PMC10767455 DOI: 10.1002/advs.202305110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Traditional synthesis methods of platinum-rare earth metal (Pt-RE) alloys usually involve harsh conditions and high energy consumption because of the low standard reduction potentials and high oxophilicity of RE metals. In this work, a one-step strategy is developed by rapid Joule thermal-shock (RJTS) to synthesize Pt-RE alloys within tens of seconds. The method can not only realize the regulation of alloy size, but also a universal method for the preparation of a family of Pt-RE alloys (RE = Ce, La, Gd, Sm, Tb, Y). In addition, the energy consumption of the Pt-RE alloy preparation is only 0.052 kW h, which is 2-3 orders of magnitude lower than other reported methods. This method allows individual Pt-RE alloy to be embedded in the carbon substrate, endowing the alloy catalyst excellent durability for oxygen reduction reaction (ORR). The performance of alloy catalyst shows negligible decay after 20k accelerated durability testing (ADT) cycles. This strategy offers a new route to synthesize noble/non-noble metal alloys with diversified applications besides ORR.
Collapse
Affiliation(s)
- Nannan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000P.R. China
- University of Chinese Academy of SciencesBeijing100049P.R. China
| | - Bing Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000P.R. China
- University of Chinese Academy of SciencesBeijing100049P.R. China
| | - Minghao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000P.R. China
| | - Yumo Chen
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055P.R. China
| | - Qiangmin Yu
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055P.R. China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350000P.R. China
| |
Collapse
|
2
|
Li S, Ding H, Chang J, Liu S, Dong S, Zyuzin MV, Timin AS, Feng L, He F, Gai S, Yang P. Sm/Co-Doped Silica-Based Nanozymes Reprogram Tumor Microenvironment for ATP-Inhibited Tumor Therapy. Adv Healthc Mater 2023; 12:e2300652. [PMID: 37306377 DOI: 10.1002/adhm.202300652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Current applications of multifunctional nanozymes for reprogramming the redox homeostasis of the tumor microenvironment (TME) have been severely confronted with low catalytic activity and the ambiguity of active sites of nanozymes, as well as the stress resistance from the rigorous physical environment of tumor cells. Herein, the Sm/Co-doped mesoporous silica with 3PO-loaded nanozymes (denoted as mSC-3PO) are rationally constructed for simultaneously inhibiting energy production by adenosine triphosphate (ATP) inhibitor 3PO and reprogramming TME by multiactivities of nanozymes with photothermal effect assist, i.e., enhanced peroxidase-like, catalase-like activity, and glutathione peroxidase-like activities, facilitating reactive oxygen species (ROS) generation, promoting oxygen content, and restraining the over-expressed glutathione. Through the optimal regulation of nanometric size and doping ratio, the fabricated superparamagnetic mSC-3PO enables the excellent exposure of active sites and avoids agglomeration owing to the large specific surface and mesoporous structure, thus providing adequate Sm/Co-doped active sites and enough spatial distribution. The constructed Sm/Co centers both participate in the simulated biological enzyme reactions and carry out the double-center catalytic process (Sm3+ and Co3+ /Co2+ ). Significantly, as the inhibitor of glycolysis, 3PO can reduce the ATP flow by cutting down the energy transform, thereby inhibiting tumor angiogenesis and assisting ROS to promote the early withering of tumor cells. In addition, the considerable near-infrared (NIR) light absorption of mSC-3PO can adapt to NIR excitable photothermal treatment therapy and photoexcitation-promoted enzymatic reactions. Taken together, this work presents a typical therapeutic paradigm of multifunctional nanozymes that simultaneously reprograms TME and promotes tumor cell apoptosis with photothermal assistance.
Collapse
Affiliation(s)
- Siyi Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jinghu Chang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russia
| | - Alexander S Timin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russia
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|