1
|
Sadowska K, Ragiń T, Kochanowicz M, Miluski P, Dorosz J, Leśniak M, Dorosz D, Kuwik M, Pisarska J, Pisarski W, Rećko K, Żmojda J. Analysis of Excitation Energy Transfer in LaPO 4 Nanophosphors Co-Doped with Eu 3+/Nd 3+ and Eu 3+/Nd 3+/Yb 3+ Ions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1588. [PMID: 36837218 PMCID: PMC9965427 DOI: 10.3390/ma16041588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Nanophosphors are widely used, especially in biological applications in the first and second biological windows. Currently, nanophosphors doped with lanthanide ions (Ln3+) are attracting much attention. However, doping the matrix with lanthanide ions is associated with a narrow luminescence bandwidth. This paper describes the structural and luminescence properties of co-doped LaPO4 nanophosphors, fabricated by the co-precipitation method. X-ray structural analysis, scanning electron microscope measurements with EDS analysis, and luminescence measurements (excitation 395 nm) of LaPO4:Eu3+/Nd3+ and LaPO4:Eu3+/Nd3+/Yb3+ nanophosphors were made and energy transfer between rare-earth ions was investigated. Tests performed confirmed the crystal structure of the produced phosphors and deposition of rare-earth ions in the structure of LaPO4 nanocrystals. In the range of the first biological window (650-950 nm), strong luminescence bands at the wavelengths of 687 nm and 698 nm (5D0 → 7F4:Eu3+) and 867 nm, 873 nm, 889 nm, 896 nm, and 907 nm (4F3/2 → 4I9/2:Nd3+) were observed. At 980 nm, 991 nm, 1033 nm (2F5/2 → 2F7/2:Yb3+) and 1048 nm, 1060 nm, 1073 nm, and 1080 nm (4F3/2 → 4I9/2:Nd3+), strong bands of luminescence were visible in the 950 nm-1100 nm range, demonstrating that energy transfer took place.
Collapse
Affiliation(s)
- Karolina Sadowska
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland
| | - Tomasz Ragiń
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland
| | - Marcin Kochanowicz
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland
| | - Piotr Miluski
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland
| | - Jan Dorosz
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland
| | - Magdalena Leśniak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland
| | - Dominik Dorosz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland
| | - Marta Kuwik
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland
| | - Joanna Pisarska
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland
| | - Wojciech Pisarski
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-007 Katowice, Poland
| | - Katarzyna Rećko
- Faculty of Physics, University of Bialystok, K. Ciołkowskiego 1L, 15-245 Bialystok, Poland
| | - Jacek Żmojda
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351 Bialystok, Poland
| |
Collapse
|
3
|
Xiao B, Huang L, Huang W, Zhang D, Zeng X, Yao X. Glycine functionalized activated carbon derived from navel orange peel for enhancement recovery of Gd(Ⅲ). J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|