1
|
Zhang S, Ruan W, Guan J. Single-atom nanozymes for antibacterial applications. Food Chem 2024; 456:140094. [PMID: 38908326 DOI: 10.1016/j.foodchem.2024.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Bacteria have always been a thorny problem that threatens human health and food safety. Conventional antibiotic treatment often leads to the emergence of drug resistance. Therefore, the development of more effective antibacterial agents is urgently needed. Single-atom nanozymes (SAzymes) can efficiently eliminate bacteria due to their high atomic utilization, abundant active centers, and good natural enzyme mimicry, providing a potential alternative choice for antibiotics in antibacterial applications. Here, the antibacterial applications of SAzymes are reviewed and their catalytic properties are discussed from the aspects of active sites, coordination environment regulation and carrier selection. Then, the antibacterial effect of SAzymes is elaborated in combination with photothermal therapy (PTT) and sonodynamic therapy (SDT). Finally, the problems faced by SAzymes in antibacterial applications and their future development potential are proposed.
Collapse
Affiliation(s)
- Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Weidong Ruan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
2
|
Salichon A, Salcedo A, Michel C, Loffreda D. Theoretical study of structure sensitivity on ceria-supported single platinum atoms and its influence on carbon monoxide adsorption. J Comput Chem 2024; 45:2167-2179. [PMID: 38795373 DOI: 10.1002/jcc.27393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Density functional theory (DFT) calculations explore the stability of a single platinum atom on various flat, stepped, and defective ceria surfaces, in the context of single-atom catalysts (SACs) for the water-gas shift (WGS) reaction. The adsorption properties and diffusion kinetics of the metal strongly depend on the support termination with large stability on metastable and stepped CeO2(100) and (210) surfaces where the diffusion of the platinum atom is hindered. At the opposite, the more stable CeO2(111) and (110) terminations weakly bind the platinum atom and can promote the growth of metallic clusters thanks to fast diffusion kinetics. The adsorption of carbon monoxide on the single platinum atom supported on the various ceria terminations is also sensitive to the surface structure. Carbon monoxide weakly binds to the single platinum atom supported on reduced CeO2(111) and (211) terminations. The desorption of the CO2 formed during the WGS reaction is thus facilitated on the latter terminations. A vibrational analysis underlines the significant changes in the calculated scaled anharmonic CO stretching frequency on these catalysts.
Collapse
Affiliation(s)
| | - Agustin Salcedo
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| | - Carine Michel
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| | - David Loffreda
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| |
Collapse
|
3
|
Mekkering MJ, Laan PCM, Troglia A, Bliem R, Kizilkaya AC, Rothenberg G, Yan N. Bottom-Up Synthesis of Platinum Dual-Atom Catalysts on Cerium Oxide. ACS Catal 2024; 14:9850-9859. [PMID: 38988652 PMCID: PMC11232020 DOI: 10.1021/acscatal.4c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
We present here the synthesis and performance of dual-atom catalysts (DACs), analogous to well-known single-atom catalysts (SACs). DACs feature sites containing pairs of metal atoms and can outperform SACs due to their additional binding possibilities. Yet quantifying the improved catalytic activity in terms of proximity effects remains difficult, as it requires both high-resolution kinetic data and an understanding of the reaction pathways. Here, we use an automated bubble counter setup for comparing the catalytic performance of ceria-supported platinum SACs and DACs in ammonia borane hydrolysis. The catalysts were synthesized by wet impregnation and characterized using SEM, HAADF-STEM, XRD, XPS, and CO-DRIFTS. High-precision kinetic studies of ammonia borane hydrolysis in the presence of SACs show two temperature-dependent regions, with a transition point at 43 °C. Conversely, the DACs show only one regime. We show that this is because DACs preorganize both ammonia borane and water at the dual-atom active site. The additional proximal Pt atom improves the reaction rate 3-fold and enables faster reactions at lower temperatures. We suggest that the DACs enable the activation of the water-O-H bond as well as increase the hydrogen spillover effect due to the adjacent Pt site. Interestingly, using ammonia borane hydrolysis as a benchmark reaction gives further insight into hydrogen spillover mechanisms, above what is known from the CO oxidation studies.
Collapse
Affiliation(s)
- Martijn J Mekkering
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Petrus C M Laan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Alessandro Troglia
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Roland Bliem
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Ali C Kizilkaya
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Chemical Engineering, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ning Yan
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Yan J, Xiao W, Zeng R, Zhao Z, Li X, Wang L. Local environmental engineering for highly stable single-atom Pt 1/CeO 2catalysts: first-principles insights. NANOTECHNOLOGY 2023; 34:505403. [PMID: 37789667 DOI: 10.1088/1361-6528/acf3f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023]
Abstract
Single-atom Pt1/CeO2catalysts may cope with the high cost and durability issues of fuel cell electrocatalysts. In the present study, the stability and underlying interaction mechanisms of the Pt1/CeO2system are systematically investigated using first-principles calculations. The Pt adsorption energy on CeO2surfaces can be divided into chemical interaction and surface deformation parts. The interaction energy, mainly associated with the local chemical environment, i.e. the number of Pt-O bonds, plays a major role in Pt1/CeO2stability. When forming a Pt-4O configuration, the catalytic system has the highest stability and Pt is oxidized to Pt2+. An electronic metal-support interaction mechanism is proposed for understanding Pt1/CeO2stability. In addition, our calculations show that the Pt1/CeO2(100) system is dynamically stable, and the external O environment can promote the further oxidation of Pt to Ptn+(2 ≤n< 4). The present study provides useful guidance for the experimental development of highly stable and efficient electrocatalysts for fuel cell applications.
Collapse
Affiliation(s)
- Jiasi Yan
- State Key Laboratory of Nonferrous Metals and Processes & National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co., Ltd, Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Wei Xiao
- State Key Laboratory of Nonferrous Metals and Processes & National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co., Ltd, Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| | - Rong Zeng
- State Key Laboratory of Nonferrous Metals and Processes & National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co., Ltd, Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| | - Zheng Zhao
- National Engineering Research Center for Rare Earth, GRINM Group Corporation Limited, Beijing 100088, People's Republic of China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Ligen Wang
- State Key Laboratory of Nonferrous Metals and Processes & National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, China GRINM Group Co., Ltd, Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| |
Collapse
|
5
|
Kravtsov AA, Blinov AV, Nagdalian AA, Gvozdenko AA, Golik AB, Pirogov MA, Kolodkin MA, Alharbi NS, Kadaikunnan S, Thiruvengadam M, Shariati MA. Acid-Base and Photocatalytic Properties of the CeO 2-Ag Nanocomposites. MICROMACHINES 2023; 14:694. [PMID: 36985101 PMCID: PMC10051769 DOI: 10.3390/mi14030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
In this work, CeO2 nanoparticles, as well as CeO2 nanocomposites with plasmonic silver nanoparticles, were synthesized using a simple sol-gel process. The concentration of silver in the composites varied from 0.031-0.25 wt%. Cerium hydroxide dried gel was calcined at temperatures from 125 to 800 °C to obtain CeO2. It was shown that, at an annealing temperature of 650 °C, single-phase CeO2 nanopowders with an average particle size in the range of 10-20 nm can be obtained. The study of acid-base properties showed that with an increase in the calcination temperature from 500 to 650 °C, the concentration of active centers with pKa 9.4 and 6.4 sharply increases. An analysis of the acid-base properties of CeO2-Ag nanocomposites showed that with an increase in the silver concentration, the concentration of centers with pKa 4.1 decreases, and the number of active centers with pKa 7.4 increases. In a model experiment on dye photodegradation, it was shown that the resulting CeO2 and CeO2-Ag nanopowders have photocatalytic activity. CeO2-Ag nanocomposites, regardless of the silver concentration, demonstrated better photocatalytic activity than pure nanosized CeO2.
Collapse
Affiliation(s)
- Alexander A. Kravtsov
- Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Andrey V. Blinov
- Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Andrey A. Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Alexey A. Gvozdenko
- Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Alexey B. Golik
- Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Maxim A. Pirogov
- Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Maxim A. Kolodkin
- Faculty of Physics and Technology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238G Gagarin Ave., Almaty 050060, Kazakhstan
| |
Collapse
|
6
|
Liu Q, Yang P, Tan W, Yu H, Ji J, Wu C, Cai Y, Xie S, Liu F, Hong S, Ma K, Gao F, Dong L. Fabricating Robust Pt Clusters on Sn-Doped CeO 2 for CO Oxidation: A Deep Insight into Support Engineering and Surface Structural Evolution. Chemistry 2023; 29:e202203432. [PMID: 36567623 DOI: 10.1002/chem.202203432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
The size effect on nanoparticles, which affects the catalysis performance in a significant way, is crucial. The tuning of oxygen vacancies on metal-oxide support can help reduce the size of the particles in active clusters of Pt, thus improving catalysis performance of the supported catalyst. Herein, Ce-Sn solid solutions (CSO) with abundant oxygen vacancies have been synthesized. Activated by simple CO reduction after loading Pt species, the catalytic CO oxidation performance of Pt/CSO was significantly better than that of Pt/CeO2 . The reasons for the elevated activity were further explored regarding ionic Pt single sites being transformed into active Pt clusters after CO reduction. Due to more exposed oxygen vacancies, much smaller Pt clusters were created on CSO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm). Consequently, more exposed active Pt clusters significantly improved the ability to activate oxygen and directly translated to the higher catalytic oxidation performance of activated Pt/CSO catalysts in vehicle emission control applications.
Collapse
Affiliation(s)
- Qinglong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peng Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haowei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiawei Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States
| | - Song Hong
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100027, China
| | - Kaili Ma
- Analysis and Testing Center, Southeast University, Nanjing, 211189, China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Pang D, Li W, Zhang N, He H, Mao S, Chen Y, Cao L, Li C, Li A, Han X. Direct observation of oxygen vacancy formation and migration over ceria surface by in situ environmental transmission electron microscopy. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Zhang Y, Zhang P, Xiong J, Li Y, Ma Y, Zhang S, Zhao Z, Liu J, Wei Y. Synergistic Effect of Pt and Dual Ni/Co Cations in Hydrotalcite-Derived Pt/Ni 1.5Co 0.5AlO Catalysts for Promoting Soot Combustion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:623. [PMID: 36838991 PMCID: PMC9965507 DOI: 10.3390/nano13040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
In this article, the catalysts of hydrotalcite-derived Ni1.5Co0.5AlO nanosheet-supported highly dispersed Pt nanoparticles (Ptn/Ni1.5Co0.5AlO, where n% is the weigh percentage of the Pt element in the catalysts) were elaborately fabricated by the gas-bubble-assisted membrane--reduction method. The specific porous structure formed by the stack of hydrotalcite-derived Ni1.5Co0.5AlO nanosheets can increase the transfer mass efficiency of the reactants (O2, NO, and soot) and the strong Pt-Ni1.5Co0.5AlO interaction can weaken the Ni/Co-O bond for promoting the mobility of lattice oxygen and the formation of surface-oxygen vacancies. The Ptn/Ni1.5Co0.5AlO catalysts exhibited excellent catalytic activity and stability during diesel soot combustion under the loose contact mode between soot particles and catalysts. Among all the catalysts, the Pt2/Ni1.5Co0.5AlO catalyst showed the highest catalytic activities for soot combustion (T50 = 350 °C, TOF = 6.63 × 10-3 s-1). Based on the characterization results, the catalytic mechanism for soot combustion is proposed: the synergistic effect of Pt and dual Ni/Co cations in the Pt/Ni1.5Co0.5AlO catalysts can promote the vital step of catalyzing NO oxidation to NO2 in the NO-assisted soot oxidation mechanism. This insight into the synergistic effect of Pt and dual Ni/Co cations for soot combustion provides new strategies for reducing the amounts of noble metals in high-efficient catalysts.
Collapse
Affiliation(s)
- Yilin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
| | - Yuanfeng Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yaxiao Ma
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Sicheng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
9
|
Regulating local coordination environment of rhodium single atoms in Rh/CeO2 catalysts for N2O decomposition. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Zagaynov IV, Liberman EY, Naumkin AV. Influence of Pt/Pd state on ceria-based support in CO oxidation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Shi Y, Wan J, Kong F, Wang Y, Zhou R. Influence of Pt dispersibility and chemical states on catalytic performance of Pt/CeO2-TiO2 catalysts for VOCs low-temperature removal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Gong X, Shi Q, Zhang X, Li J, Ping G, Xu H, Ding H, Li G. Synergistic effects of PtFe/CeO2 catalyst afford high catalytic performance in selective hydrogenation of cinnamaldehyde. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Single-Atom Catalysts: A Review of Synthesis Strategies and Their Potential for Biofuel Production. Catalysts 2021. [DOI: 10.3390/catal11121470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biofuels have been derived from various feedstocks by using thermochemical or biochemical procedures. In order to synthesise liquid and gas biofuel efficiently, single-atom catalysts (SACs) and single-atom alloys (SAAs) have been used in the reaction to promote it. SACs are made up of single metal atoms that are anchored or confined to a suitable support to keep them stable, while SAAs are materials generated by bi- and multi-metallic complexes, where one of these metals is atomically distributed in such a material. The structure of SACs and SAAs influences their catalytic performance. The challenge to practically using SACs in biofuel production is to design SACs and SAAs that are stable and able to operate efficiently during reaction. Hence, the present study reviews the system and configuration of SACs and SAAs, stabilisation strategies such as mutual metal support interaction and geometric coordination, and the synthesis strategies. This paper aims to provide useful and informative knowledge about the current synthesis strategies of SACs and SAAs for future development in the field of biofuel production.
Collapse
|
14
|
Research advances of rare earth catalysts for catalytic purification of vehicle exhausts − Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Abstract
Packaging containing nanoparticles (NPs) can increase the shelf life of products, but the presence of NPs may hazards human life. In this regard, there are reports regarding the side effect and cytotoxicity of nanoparticles. The main aim of this research was to study the migration of silver and copper nanoparticles from the packaging to the food matrix as well as the assessment techniques. The diffusion and migration of nanoparticles can be analyzed by analytical techniques including atomic absorption, inductively coupled plasma mass spectrometry, inductively coupled plasma atomic emission, and inductively coupled plasma optical emission spectroscopy, as well as X-ray diffraction, spectroscopy, migration, and titration. Inductively coupled plasma-based techniques demonstrated the best results. Reports indicated that studies on the migration of Ag/Cu nanoparticles do not agree with each other, but almost all studies agree that the migration of these nanoparticles is higher in acidic environments. There are widespread ambiguities about the mechanism of nanoparticle toxicity, so understanding these nanoparticles and their toxic effects are essential. Nanomaterials that enter the body in a variety of ways can be distributed throughout the body and damage human cells by altering mitochondrial function, producing reactive oxygen, and increasing membrane permeability, leading to toxic effects and chronic disease. Therefore, more research needs to be done on the development of food packaging coatings with consideration given to the main parameters affecting nanoparticles migration.
Collapse
|
16
|
Zhang N, Yan H, Li L, Wu R, Song L, Zhang G, Liang W, He H. Use of rare earth elements in single-atom site catalysis: A critical review — Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|