1
|
Wang H, Zhang D, Zhang R, Ma H, Zhang H, Yao R, Liang M, Zhao Y, Miao Z. Dealloying Synthesis of Bimetallic (Au-Pd)/CeO 2 Catalysts for CO Oxidation. ACS OMEGA 2023; 8:11889-11896. [PMID: 37033829 PMCID: PMC10077571 DOI: 10.1021/acsomega.2c07191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The nanorod-structured (Au-Pd)/CeO2 catalysts with different Au/Pd ratios were prepared from Al-Ce-Au-Pd precursor alloys through combined dealloying and calcination treatment. XRD, SEM, TEM, XPS, Raman spectroscopy, and N2 adsorption-desorption measurements were applied to test the structure and physicochemical properties of samples. Catalytic evaluation results imply that the (Pd0.15-Au0.15)/CeO2 catalyst calcined at 500 °C possesses optimal catalytic activity for CO oxidation when compared with other catalysts with different Au/Pd ratios or (Pd0.15-Au0.15)/CeO2 calcined at other temperatures, whose 50% and 99% reaction temperature can be reached as low as 50 and 85 °C, respectively. This superior catalytic property is attributed to their robust nanorod structure and the introduction of noble bimetal Pd and Au, which can construct a nanoscale interface to access fast electron motion, thus enhancing catalytic efficiency.
Collapse
|
2
|
Fedorova EA, Kardash TY, Kibis LS, Stonkus OA, Slavinskaya EM, Svetlichnyi VA, Pollastri S, Boronin AI. Unraveling the low-temperature activity of Rh-CeO 2 catalysts in CO oxidation: probing the local structure and Red-Ox transformation of Rh 3+ species. Phys Chem Chem Phys 2023; 25:2862-2874. [PMID: 36625349 DOI: 10.1039/d2cp04503f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The local structure of the active sites is one of the key aspects of establishing the nature of the catalytic activity of the systems. In this work, a detailed structural investigation of the Rh-CeO2 catalysts prepared by the co-precipitation method was carried out. The application of a variety of physicochemical methods such as XRD, Raman spectroscopy, XPS, TEM, TPR-H2, and XAS revealed the presence of highly dispersed Rh3+ species in the catalysts: Rh3+ single ions and RhOx clusters. The substitution of Ce4+ ions by Rh3+ species, which provided a strong distortion of the CeO2 lattice, is shown. XAS data ensured the refinement of the Rh local structure. It was shown that single Rh3+ sites located next to each other can merge the formation of RhOx clusters with Rh local environment close to the one in Rh2O3 and CeRh2O5 oxides. The distortion of the CeO2 lattice around single and cluster rhodium species had a beneficial effect on the catalytic activity of the samples in low-temperature CO oxidation (LTO-CO). TEM, XAS, and in situ XRD data allowed establishing the structural transformations of the catalysts under Red-Ox treatments. The reduction treatment led to Rhn metallic cluster formation localized on defects of the reduced CeO2-δ. The reduced sample demonstrated efficient CO conversion at 0 °C. However, this system was not stable: its contact with air led to ceria reoxidation and partial reoxidation of Rh to highly dispersed Rh3+ species at room temperature, while heating in an oxidizing atmosphere resulted in the complete reoxidation of metallic rhodium species. The results of the work shed light on the structural aspects of the reversibility of the Rh-CeO2 catalysts based on the highly dispersed Rh3+ species under treatment in the reaction conditions.
Collapse
Affiliation(s)
- Elizaveta A Fedorova
- Leibniz Institute for Catalysis, Albert-Einstein Str. 29a, 18059, Rostock, Germany.
| | - Tatyana Yu Kardash
- Boreskov Institute of Catalysis, pr. Lavrentieva 5, 630090, Novosibirsk, Russia.
| | - Lidiya S Kibis
- Boreskov Institute of Catalysis, pr. Lavrentieva 5, 630090, Novosibirsk, Russia.
| | - Olga A Stonkus
- Boreskov Institute of Catalysis, pr. Lavrentieva 5, 630090, Novosibirsk, Russia.
| | - Elena M Slavinskaya
- Boreskov Institute of Catalysis, pr. Lavrentieva 5, 630090, Novosibirsk, Russia.
| | | | - Simone Pollastri
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Basovizza, Trieste, I-34149, Italy
| | - Andrei I Boronin
- Boreskov Institute of Catalysis, pr. Lavrentieva 5, 630090, Novosibirsk, Russia.
| |
Collapse
|
3
|
Wang H, Duan W, Zhang R, Ma H, Ma C, Liang M, Zhao Y, Miao Z. Fabrication and catalytic properties of nanorod-shaped (Pt-Pd)/CeO 2 composites. RSC Adv 2023; 13:2811-2819. [PMID: 36756418 PMCID: PMC9847492 DOI: 10.1039/d2ra07395a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Nanorod-supported (Pt-Pd)/CeO2 catalysts were synthesized by a simple method of dealloying Al91.7Ce8 Pt X Pd0.3-X (X = 0, 0.075, 0.1, 0.15, 0.2, 0.3) alloy ribbons. SEM and TEM characterization implied that after calcination treatment, the achieved resultants exhibited interspersed nanorod structures with a rich distribution of nanopores. Catalytic tests showed that the (Pt0.1-Pd0.2)/CeO2 catalyst calcined at 300 °C exhibited the highest catalyst activity for CO oxidation when compared with other catalysts prepared at different noble metal ratios or calcined at other temperatures, whose complete reaction temperature was as low as 100 °C. The outstanding catalytic performance is ascribed to the stable framework structure, rich gas pathways and collaborative effect between the noble Pt and Pd bimetals.
Collapse
Affiliation(s)
- Haiyang Wang
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Key Laboratory of Organic Polymer Photoelectric Materials, School of Electronic Information, Xijing UniversityXi'an710123P. R. China
| | - Wenyuan Duan
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Key Laboratory of Organic Polymer Photoelectric Materials, School of Electronic Information, Xijing UniversityXi'an710123P. R. China
| | - Ruiyin Zhang
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Key Laboratory of Organic Polymer Photoelectric Materials, School of Electronic Information, Xijing UniversityXi'an710123P. R. China
| | - Hao Ma
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Key Laboratory of Organic Polymer Photoelectric Materials, School of Electronic Information, Xijing UniversityXi'an710123P. R. China
| | - Cheng Ma
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Key Laboratory of Organic Polymer Photoelectric Materials, School of Electronic Information, Xijing UniversityXi'an710123P. R. China
| | - Miaomiao Liang
- School of Materials Science and Engineering, Xi'an Polytechnic UniversityXi'anShaanxi710048P. R. China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Key Laboratory of Organic Polymer Photoelectric Materials, School of Electronic Information, Xijing UniversityXi'an710123P. R. China
| | - Zongcheng Miao
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Key Laboratory of Organic Polymer Photoelectric Materials, School of Electronic Information, Xijing University Xi'an 710123 P. R. China.,School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
| |
Collapse
|
4
|
Regulating local coordination environment of rhodium single atoms in Rh/CeO2 catalysts for N2O decomposition. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Ali S, Jiang Y, Lai Z, Zhang P, Ye S, Wang J, Fu J, Zhang N, Zheng J, Chen B. 3D ball type self-assemble CeO2 nanostructure produced by facile hydrothermal strategy for catalytic wet air oxidation of N,N-dimethylformamide. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Yadav VK, Das T. The effect of MgO and preparation techniques of the FeMnO δ/MgO–Al 2O 3 catalyst used for the vapor phase oxidation of cyclohexane. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00210h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of Cy-H over the modified support and catalysts prepared by various methods.
Collapse
Affiliation(s)
- Vijendra Kumar Yadav
- Heterogeneous Catalysis Laboratory (Reaction Engineering), Department of Chemical Engineering, Indian Institute Technology Roorkee, Haridwar-247667, Uttarakhand, India
| | - Taraknath Das
- Heterogeneous Catalysis Laboratory (Reaction Engineering), Department of Chemical Engineering, Indian Institute Technology Roorkee, Haridwar-247667, Uttarakhand, India
| |
Collapse
|