1
|
La3+’s Effect on the Surface (101) of Anatase for Methylene Blue Dye Removal, a DFT Study. Molecules 2022; 27:molecules27196370. [PMID: 36234906 PMCID: PMC9571724 DOI: 10.3390/molecules27196370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Density functional theory (DFT) is a widely used method for studying matter at the quantum level. In this study, the surface (101) of TiO2 (anatase phase) was considered to develop DFT calculations and explain the effect of lanthanum ion (La3+) on the electronic properties, adsorption capacity, and photocatalytic activity of this semiconductor. Due to the presence of the La3+ ion, the bandgap energy value of La/TiO2 (2.98 eV) was lower than that obtained for TiO2 (3.21 eV). TDOS analysis demonstrated the presence of hybrid levels in La/TiO2 composed mainly of O2p and La5d orbitals. The chemical nature of the La-O bond was estimated from PDOS analysis, Bader charge analysis, and ELF function, resulting in a polar covalent type, due to the combination of covalent and ionic bonds. In general, the adsorption of the methylene blue (MB) molecule on the surface (101) of La/TiO2 was energetically more favorable than on the surface (101) of TiO2. The thermodynamic stability of doping TiO2 with lanthanum was deduced from the negative heat-segmentation values obtained. The evidence from this theoretical study supports the experimental results reported in the literature and suggests that the semiconductor La/TiO2 is a potential catalyst for applications that require sunlight.
Collapse
|
2
|
Application of three Ln(Ⅲ)-coordination polymers in fields of luminescence, antibacteria and detection of Fe3+ and 4-nitrophenol. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Regenerable Kiwi Peels as an Adsorbent to Remove and Reuse the Emerging Pollutant Propranolol from Water. Processes (Basel) 2022. [DOI: 10.3390/pr10071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work aims to characterize the adsorption process of propranolol HCl, an emerging pollutant and a widely used β-blocker, onto kiwi peels, an agricultural waste. The use of UV-vis spectroscopy was considered to obtain information about the pollutant removal working in the in-batch mode. In a relatively short time, the adsorption process could remove the pollutant from water. A kiwi peel maximum adsorption capacity of 2 mg/g was obtained. With the perspective of scaling up the process, preliminary in-flux measurements were also performed. The investigation of the whole in-batch adsorption process was conducted by studying the effect of ionic strength (adopting salt concentrations from 0 to 0.4 M), pH values (from 2 to 12), adsorbent/pollutant amounts (from 25 to 100 mg and from 7.5 to 15 mg/L, respectively), and temperature values (from 289 to 305 K). The thermodynamics, the adsorption isotherms, and the kinetics of the adsorption process were also carefully investigated. The Langmuir model fitted the experimental data well, with an R2 of 0.9912, restituting KL: 1 L/mg and Q0: 1.8 mg/g. The temperature increase enhanced the pollutant removal due to the endothermic adsorption characteristics. Accordingly, a ΔH°298K of +70 KJ/mol was obtained. The pseudo-first-order kinetic model described the process. Due to the results observed during the study of the effects of pH and ionic strength, the prominent presence of electrostatic interactions, working in synergy with hydrophobic forces and H-bonds between the pollutant and kiwi peel surfaces, was successfully demonstrated. In particular, FTIR-ATR measurements confirmed the latter findings. Finally, desorption experiments for recycling 100% of propranolol for each cycle were performed using 0.1 M MgCl2. Ten cycles of adsorption/desorption were obtained and indicated that the percentage of propranolol removal was not affected during each run, increasing the maximum adsorption from 2 to 20 mg/g.
Collapse
|